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Abstract. The tables coordinate has great performance in modern industry such as, for example, the positioning of 
workpieces and tools for machining, soldering printed circuit boards and measurement of complex geometries. In 
order to these machines be efficient is necessary that the movements carried out by their shafts have a low error. This 
work aims to design controllers for a table of coordinates with two degrees of freedom to be able to describe a circular 
path and another polynomial with the lowest possible error. The system consists of two bases perpendicular to each 
other and triggered by continuous current motors. It was used the design procedure Guillemin - Truxal in order to 
determine the controllers of bases from their transfer functions. The controllers achieved were of type PI. The 
simulated and experimental results showed that the table followed the proposed trajectories with low error and without 
saturation of the control variable. 
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1. INTRODUCTION

The automatic control has played an important role every day that passes in engineering and science. It uses goes
from control of industrial operations, such as pressure, temperature and humidity, to the direction of spacecraft (Ogata, 
2003). 

Since it emerged until today, the automatic control has evolved greatly, in part due to advances in technology, such 
as computers. 

In the branch of the industry especially, the automatic control has become an essential tool to improve the quality of 
a product and maximization of resources. 

An example of that was mentioned is associated with coordinate tables XY and XYZ, used in machine tool 
industries. Even today exist in the market that ones that work with manual actuation through steering wheels, which 
makes them more affordable and dismisses specialized training of staff, but the quality of the product becomes 
restricted exclusively to the operator skill and its experience acquired for product quality (Menezes Filho, 2010). The 
advancement in industrial sectors and the need for greater accuracy in positioning system of these machines, made them 
been replaced by tables driven by electric motors, hydraulics and pneumatic (JÚLIO, 2010). With this, it became 
possible to apply the automatic position control instead of manual control, gaining greater efficiency, speed and 
reliability. 

Most tables of coordinates on the market uses two types of drive: stepper motor, which works on a structure of open 
loop and servo mechanism, which uses continuous current motors or induction loop closed. Thus there is a need for 
position sensors (encoders) that serve to provide the speed and angular position of the motor shaft (Menezes, 2007). 

For good performance the positioning error and the smoothness of the movement are d accuracy determinants of 
form and roughness to the part intended to be manufactured, being the error one of the critical points of these types of 
machine tools (Jesus, 1999). The controllers used in these machines has the function of minimizing the error, in another 
words, decreasing the the relationship between the desired measurement or set point and the measurement made. 

The objective of this work is to design controllers for a table of coordinates using the method Guillemin Truxal, so 
that it can describe a circular path and polynomial with the smallest possible error and without saturation of the control 
variable. For this purpose the mathematical models are used obtained by parametric identification of a real prototype. 

2. TABLE COORDINATES AND TRANSFER FUNCTIONS
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The system consists of two bases, independently activated, which move in perpendicular directions in the horizontal 
plane, as shown in Figure (1). 

Figure 1. Table Coordinates 

The tables are triggered by continuous current motors and their positions are detected by encoders, located at the 
ends of each axis. The sensor signals are recorded by a computer through a plate with input and output of data and the 
software named Lab VIEW. The control variable is the strain on the engines, which are the elements responsible for the 
position control of the table. 
Mathematical models of the upper and lower coordinate tables were obtained using parametric identification technique, 
in open loop mode, through identification model BJ (Box Jenkins), using a square wave as excitation signal with an 
amplitude of ± 2.5 V and sampling time 10 ms, as can be seen in equations (1) and (2). (BRAGA, 2006) 

             
      

              
 (Base upper)  (1) 

             
    

               
 (Base bottom)  (2) 

3. PROJECT OF CONTROLLER BASED ON A MODEL OF REFERENCE FOR TRAJECTORY

TRACKING OF A POLYNOMIAL

The method of Guillemin Truxal is trampled in the design of a controller GC (s) that leads to a relationship of
control desired in closed loop (D'Azzo & HOUPIS, 1978). This relationship is chosen by the designer and is represented 
in Eq (3) by the transfer function (reference model): 

Figure 2 - control system with cascade controller 

          
    

    
 

    

    
 

         

           
(3) 

Where N(s) and D(s) are the numerator and denominator, respectively, of the transfer function with desired 
characteristics. 

The control relation desired for this work is a third-order polynomial trajectory that was chosen for the control 
variable does not saturate in the positioning of both bases. The table coordinates should be able to follow it in a 
minimum time of 120 s, as well as a circular path with a radius of 25mm. 

A motion trajectory is a third degree polynomial function of time defined by Equation (4) (Craig, JJ 1986). 
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  (4) 

The parameters P (t) are determined from equation (5), depending on the desired initial and final conditions in terms 
of displacement and velocity, namely:                                                               

 
 
 
 
 
      
      

    
  

   
 

        
 

    
  

    
  

   
 

         
 
 
 
 

  

  

  

  

  

   

 

  

  

  

  (5) 

For x0 = 0, v0 = 0, and xf = 600 vf = 0, with t0 = tf = 0s and 130s, the polynomial P (t) is defined by equation (6). 

                                (6) 

The path P (t) is similar to an input of a ramp as shown in Figure (3). 

Figure 3 - Characteristic curve P(t) 

In order to a transfer function having zero steady response to the error signal input of a ramp is necessary that it be a 
system of type 2 or greater, such as from Eq (7) (HOUPIS & D'Azzo, 1978). 

     
    

     
 

              
       

     
  (7) 

The transfer functions which represent the bases are third order and have no zeros in the numerator, which implies 
the need for a driver whose transfer function has at least one zero and be itself, as the function Gc (s) defined by Eq. (8). 

      
      

      
 (8) 

Knowing that the transfer functions of the base table coordinates has the following form: 

    
  

       
      

 (9) 

Implies that the transfer function of the system under the action of the controller, closed loop using Eq (9) and Eq 
(8) is given by Eq (10). 

   
         

           
            

                   
  (10) 

As T1 (s) is fourth order, there must be a reference model GR (s), also fourth order that accompanies the trajectory P 
(t), with zero error steady. Thus, equating equations (7 and 10) we get the following equality: 

        
   (11) 
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  (12) 

            
   (13) 

            (14) 

        
   (15) 

Replacing the equation (15) into equation (12) it follows that ψ2 = 0. Thus, GC (s) is reduced to a proportional 
integral controller with proportional gain kp = k and integral gain ki = k · ψ1, according to Equation (16). 

     
 

 
    (16) 

The natural frequency ωn must be chosen such that GR (s) has performance compatible with the design criteria. 
Thus, the parameter GR (s), f1 and f2 can be determined through the equations (17 and 18): 

   
  

  
  (17) 

   
  

  
   (18) 

Ψ1 and f3 parameters in equations (11 and 12) are functions of frequency proportional gain k ωn. 

The performance specifications for this project are: accommodation time of 100s, no response on signal, control 
variable without saturation and maximum error of 2%. 

Although the method of Guillemin Truxal requires the poles and zeros desired immediately, this work seeks to 
accomplish a larger study, determining various functions GR (s) that can be found by varying the parameters needed to 
find her. This study aims to determine the function that best meets the requirements of the project. Settling ωn, f3 is 
determined to a value of k such that GR (s) meets these criteria. Using this value relation k and ωn, determine ψ1. 

So, have the following script: 
1. It selects a value of frequency ωn;
2. Is determined by f1 and f2 Equations (17 and 18);
3. Shall be chosen the desired value of the proportional gain kp;
4. Determines the value _relation f3 by Equation (15);
5. It is assessed if GR (s) follows the trajectory of sinusoidal desired shape. If not, you can choose a new value for ωn

or kp and returns to step 2. Otherwise it follows step 6; 
6. Having the values determined above, are the values of ψ1 and ψ2;
7. How, in the project, ki = kp · ψ1, determine the integral gain and has the desired PI controller.

The function GR (s) may initially be chosen as a criterion for performance index as the criterion Integral Absolute 
Error Multiplied by Time, AEMT as an initial step, which can facilitate the determination of the controller parameters 
easier. 

3.1 Controller for the lower base 

Following the script shown in previous section ωn = 2 rad/s of  Eqs (17 and 18) and based on the parameters of the 
transfer function of the lower base, we can determine the values relation f1 and f2 through a computational routine 
created in MatLab program. The gain kp = 30 was selected using as criteria the proper monitoring of the trajectory 
polynomial by GR (s) and by the system under the action of the controller, because the variation of this parameter 
changes the correctness of it. Thus there was obtained: f1 = 62.65, 916.25 f2 = f3 = 291.75. With these parameters the 
desired ratio of control or reference model result is shown in Equation (19). 

        
        

                          
  (19) 

The PI controller determined by the equations (13 and 14) has the following transfer function in Laplace 
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  (20) 

3.2 Controller for the upper base 

Similarly the controller design for the lower base, in this case, for ωn = 1 rad/s and k = 30, it was determined: f1 = 
64.18, f2 = 863, f3 = 733.2. The function of the reference model of the upper base takes the form: 

        
        

                          
(21) 

The controller, in turn, is shown in Equation (22). 

           
      

 
(22) 

3.3 Curves simulated and experimental trajectory polynomial 

To trace the polynomial is necessary that each base moves in time following paths that composed, resulting in 
desired polynomial. Thus, Figure (4) shows the path followed by the polynomial lower base, and Fig (5) shows a 
control variable. Figure (6) shows the path followed by the base and top, Figure (7) shows that the behavior of its 
control variable. 

Figure 4 - Polynomial curve of third order drawn 
by the lower base 

Figure 6 - Curve drawn by the upper base to  
follow a ramp function 

Figure 5 - Control variable for the lower base 

Figure 7 - Control variable for the upper base 

Complementing Figure (8) shows the polynomial resulting from the movement path of the two bases. 
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Figure 8 - Polynomial curve traced by simultaneous displacement of the two bases 

3.4 simulated and experimental curves for a circular path 

The following shows the displacement curves of the upper and lower bases, resulting from the controllers influence 
on them to follow the explicit references in Eqs (23 and 24). Each curve shows both the simulated response and the 
experimental response. The composition of the paths leads to a circle of radius 25 mm and a frequency of 0.06 rad/s. 

              (23) 

               (24) 

Figures (9a and 9b) show the displacement of the upper base and experimentally simulated and the behavior of the 
control variable for this base. It is noticed that the control variable remains without saturation (± 2.5 V), except in the 
small range where the trajectory is a ramp (deliberately imposed to prevent system instability, observed in experimental 
tests). In the comparison between the experimental and simulated response, there is a slight lag. 

(a)                      (b) 

Figure 9 - Curves tracking a trajectory cosine from upper base (a) and its control variable (b) 

Figures (10a and 10b) respectively show the displacement of the lower base and the behavior of the control variable 
for this base. Again the control variable remains without saturation and the gap between the experimental and simulated 
response is minimal. 
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(a) (b) 

Figure 10 - Curves tracking a sinusoidal trajectory from the lower base (a) and its control variable (b) 

Figure (11) shows the resulting composition circumference of the trajectories of the upper and lower bases. 

Figure 11 - Circumference simulated and experimental mapped by the composition of 
movements of the upper and lower bases 

4. CONCLUSION

A new alternative controller design based on the procedure Guillemin - Truxal was presented in this paper. The 
methodology consists in designing a controller, to work on cascade with a specific system, so that the transfer function 
resulting in closed loop has the characteristics of a desired system. The parameters of the controllers were determined so 
that the system, under the action of the same controllers, accompanied a third degree polynomial trajectory from with 
minimum error (less than 2%), settling time of 100s and not saturation of the control variable. All of the above criteria 
were fulfilled according the results showed. The drivers were the type PI and also showed robustness with respect to the 
accompaniment of a circular path. 
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