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Abstract: This work therefore provides a method for maximizing the workspace of the parallel robot 6 - RUS by optimizing
the robot fixed joints position, evaluating the proximity of singularities and employing a hybrid approach , ie Genetic
Algorithm based and derived , for optimization.
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1. INTRODUCTION

According to Merlet, comparing parallel and serial robot configurations, it is observed that parallel ones are advantage-
ousness in terms of accuracy, rigidity and ability to manipulate large loads. Therefore, parallel robots are more suitable for
tasks that require such properties. However the small workspace compared to serial robots is a drawback that researchers
try to minimize, optimizing the parallel robot parameters (Merlet, 2001).

The parallel robots performance is sensitive to the dimensions and geometry (Kelaiaia et al. (2012); Merlet (2006)),
the same design may be optimized though varying these parameters. Among all kinematic measures, the workspace is
one of the most important indices in design of a parallel robot (Merlet, 2001).

Zhang (2010) develops a stiffness optimization for a spatial 5-DOF parallel robot. This optmization, uses a genetic
algorithm to escape from local minima. Barbosa, Pires and Lopes (Barbosa et al., 2005) optimize the kinematic design a
6-dof parallel robot for maximum dexterity using a Genetic algorithm. Stan, Maties and Balan (Stan et al., 2007) applied
a Genetic algorithm to multicriteia optimization problem for 2-DOF micro parallel robot.

The parallel robot studied in this work is a flight simulator belonging to Udesc - Ceart in Florianopolis . This robot
presents the second most common architecture for parallel robot used in flight simulator the 6 - RUS. This paper establishes
a method for optimizing the robot leg positions angles (alphas) with the aim of maximizing the workspace i.e. the
maximum platform rotation in a certain workspace point. To optimize this system is used a work-based index. This index
measures the robot closeness to the singularities. This index is evaluated for different configurations, with respect to each
motor positions on the fixed platform (base), optimizing the workspace with respect to maximum effector orientation.

A index (constraint), is based on the robot kinematics and it is used to optimize the motor joint position (optimization
parameter) that maximize the orientation workspace ( objective function ) . The method used for optimization is a genetic
Partial swam orientation (PSO) algorithm and FMINCON, the MATLAB optimization function. Initially , the genetic
algorithm PSO optimizes the problem to escape from local minima and provides a set of optimized parameters in the
optimum region. The FMINCON receives these optimized parameters and finds the best set that maximizes workspace.
This work therefore provides a method for maximizing the workspace of the parallel robot 6 - RUS by optimizing the
robot fixed joints position, evaluating the singularity proximity and employing a hybrid approach , i.e. combining genetic
and gradient based algorithms.

2. PARALLEL ROBOTS

Parallel robots, also named parallel manipulators, typically consist by a moving platform connected to a fixed base by
several limbs or legs (Merlet, 2001). See "Figure 1"and "Figure 2".

An n-DOF (n-degree-of-freedom) fully-parallel mechanism is composed of n independent legs connecting the mobile
platform to the fixed platform. Each of these legs is a serial kinematic chain that hosts one or more motors which
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actuates, directly or indirectly, the chain (Bonev, 2003). Due to distribution of external load, parallel robots present good
performances in terms of accuracy, rigidity and ability to manipulate large loads (Merlet, 2001).

The 6-DoF parallel robot most studied architecture is the 6-UPS. This architecture is known as Stewart-Gough plat-
form as presented in (Fichter, 1986). The Stewart-Gough platform presents a stiffness architecture due that the load
distribution is only axial and allows the use of powerful hydraulic actuators. Motion simulators, generally, manipulate
excessive loads of up to tens of tons (Bonev, 2003).

The second most common architecture is the 6-RUS kinematic chain, this chain architecture was proposed by Hunt
early in 1983 (Merlet, 2001). In this architecture the actuated joint is rotational, which leads to the interchange possibility
of universal and spherical joint without any change in mechanism characteristics (Bonev, 2003). This paper focus in a
method to optimize the workspace the robot 6-RUS using a index of singularity closeness based on screw theory. (Ball
(1900); Hunt (1983) e Campos (2001))

Figura 1: 6-RUS CAD Model.

Figura 2: Ceart 6-RUS Fly Simulator.

2.1 6-RUS INVERSE KINEMATIC

For inverse kinematic problem the vector describing moving platform position in cartesian coordinates system and
orientation by roll, pitch and yaw angles respectively is given by P = [Px Py Pz ϕ ϑ ψ].

Few geometrical parameters are necessary to develop the inverse kinematic problem solution for 6-RUS parallel robot.
Them can be obtained from the built prototype or the CAD model. See "Figure 3".

Required parameters are the fixed base radius rb, moving platform radius rp , half-distance between actuated joint pair
d, half-distance between joints in moving platform e , crank dimension ri which is located in active joint, rod dimension
Rp , position angle of actuators pair χa, position angle of passive spherical joint in moving platform χj and the angle
between the crank rotational plane and an axis parallel to y β (Campos et al., 2013). These parameters are detailed in
Figure 2.

Initially is needed to define the position of the actuators, which may be obtained by Eq. (1) that must be solved for all
legs resulting a 6x3 vector:

~A = ~R+ ~m (1)

m = (−1)1−id (2)

Being i = 1, 2, 3, .., 6 corresponding to each kinematic chain.

~R = rb cosχaî+ rb sinχaĵ (3)
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Figura 3: Parallel robot geometrical parameters (Campos et al., 2013).

~m = −m sinχaî+m cosχaĵ + 0k̂ (4)

~A = (rb cosχa −m sinχa) î+ (rb sinχa +m cosχa) ĵ + 0k̂ (5)

In same way, all platform joints position, i.e. spherical joints attached to move platform must to be found in local
coordinate system attached to moving platform:

~C = ~r + ~n (6)

n = (−1)i−1e (7)

~r = rp cosχj î+ rp sinχj ĵ + 0k̂ (8)

~n = −n sinχj î+ n cosχj ĵ + 0k̂ (9)

m ~PC = rp cosχj −m sinχj î+ rp sinχj +m cosχj ĵ + 0k̂ (10)

The rotational transformation using roll, pitch and yaw angles notation as defined in Eq.(11) is used in order to find
m ~PC from Tool Center Point, attached to move platform origin mO to spherical joints in general coordinate system
attached to fixed base origin f ~O.

rot =

 cϕcθ cϕsϑsψ − sϕcψ cϕsϑcψ + sϕcψ
sϕcθ sϕsϑsψ + sϕcψ sϕsϑcψ − cϕsψ
−sϑ cϑsψ cϑcψ

 (11)

f ~PC = rot m ~PC (12)

to solve the inverse kinematic problem, which is detailed in next session.

Figura 4: Vectorial chain to i-leg (Campos et al., 2013).

In order to find vector from actuator to spherical joint ~I the vectorial equation Eq. (13) must be solved.

f ~OA =f ~OP + f ~PC + f ~I (13)
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~I = f ~OA− f ~OP − f ~PC (14)

The vector ~I may be decomposed in two components, one Iω in plane ωi, another one orthogonal to ωi. The Iω in ωi

may be decomposed in two components ~Iz and ~T , one parallel to the z axis and is contained in plane ωi and the other one
is parallel to z axis and other one parallel to xy plane, respectively.

~Iω = ~Iz + ~T (15)

The norm of vector ~T may be written in the components of ~I terms.

T =
∥∥∥~T∥∥∥ = Ix cosβ + Iy sinβ (16)

Where Ix and Iy are ~I components in x and y axis, respectively.
With these definitions, it is possible to analyse crank rotational plane ωi and define angles θ, α, φ, ε which must be

found to solve inverse kinematic problem, being θ the crank angle.

Figura 5: Plane ωi frontal view and requeried angles (Campos et al., 2013).

After some consideration can be found that θ is:

θ =
π

2
− arctan

u

v
− arctan

q

w
(17)

The parameters u, v, w and q are defined as:

u = 2ri (Ix cosβ + Iy sinβ) (18)

v = −2riIz (19)

w = R2
i − r2i − I2x − I2y − I2z (20)

q =
√
u2 + v2 − w2 (21)

With these terms, it is solved the inverse kinematic problem. Once function arctan has a dubious response, it is
convenient to use atan2 function.

2.2 DIFFERENTIAL KINEMATIC AND INDEX BASED ON SCREW THEORY

In order to simulate the singular behaviour of parallel robots, the screw theory is used aiming at kinematic modelling.
The screw is a geometric element composed by a directed line (axis) and by a scalar length parameter h called pitch (Ball,
1900). If the directed line is represented by a normalized vector, the screw is called a normalized screw (Campos et al.,
2011).

2.3 DIFERENTIAL KINEMTIC

The Mozzi theorem (Ceccarelli, 2000) states that the velocities of points on a rigid body with respect to an inertial
reference frame O(X,Y, Z) may be represented by a differential rotation ω about a given fixed axis and a simultaneous
differential translation κ along the same axis. The complete movement of the rigid body, combining rotation and trans-
lation, is called screw movement or twist $. The body ”twists” around an axis instantaneously fixed with respect to the
inertial reference frame. This axis is called the screw axis and the rate of the translational velocity and the angular velocity
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is called the pitch of the screw h = ||κ||/||ω||. The twist represents the differential movement of the body with respect to
the inertial frame and may be expressed by a pair of vectors, in ray order, as (Hunt, 2003)

$ =

[
ω
Vp

]
= [LMNP ∗Q∗R∗]

T (22)

Here ω is the angular velocity of the body with respect to the inertial frame and Vp represents the linear velocity of a
point P attached to the body, which is instantaneously coincident with frame O. It is possible to express the same twist
in axis order $ = [P ∗Q∗R∗LMN ]T . The vector Vp consists of two components: a) a velocity component parallel to the
screw axis represented by τ = hω; and b) a velocity component normal to the screw axis represented by So × ω, where o

is the position vector of any point at the screw axis.
A twist may be decomposed into its magnitude and its corresponding normalized screw $̂, i.e. $ = $̂Ψ (Hunt (2003)

(Campos et al., 2011)).

2.4 STATIC

In the same way, the Poinsot theorem (Hunt, 1990) states that a general action, i.e. a force and a couple, upon a rigid
body may be carried by a screw, called wrench $

′
(Ball (1900); Hunt (2003)). In this case the wrench in ray order is

$
′

=

[
f
Co

]
=
[
L

′
M

′
N

′
P ∗′

Q∗′
R∗′
]T

(23)

where f is the resultant force andCo is the resultant couple aroundO, upon the body. The wrench may be decomposed

as $
′

= $
′
τ where τ is the wrench magnitude and the $

′
=
[
L

′
M

′
N

′
P ∗′

Q∗′
R∗′
]T

is the normalized screw. The wrench

pitch is determinated by h
′

= ||C||/||f ||, being C the couple component in the screw axis direction (Campos et al., 2011).

2.5 POWER

Consider a rigid body supporting a wrench $
′

=
[
fTCT

o

]T
while it is moving around an instantaneous twist $ =[

ωTV T
p

]T
. Therefore, the power carried out is (Ball (1900); Hunt (2003))

δW = Co · ω + f · Vp = $
′T $ (24)

where $
′

and $ are given in axis and ray order, respectively. The screw theory is suitable to represent parallel manipu-
lator end effector movements and actions which are used to detect singularities (Campos et al., 2011).

2.6 SINGULARIT INDEX

A index based on screw theory is defined below to compute de proximity of a singular position of 6-RUS manipulator.
This information is used as the constrain parameter of the optimization to maximize the workspace of this robot.

2.6.1 The Robot Wrenches

To determine the singularity index the wrenches acting in the moving platform most by found.

Figura 6: 6 RUS parallel robot geometrical parameters.

Being i = 1, 2, 3, .., 6 corresponding to each kinematic chain. The crank vector, from point A to B is:

~bi = ri cosχa cos θî+ ri sinχa cos θĵ − ri sin θk̂ (25)
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Adding Eq.(5) and Eq.(25) equations, the vector from O, origin point to B is:

~Bi = ~bi + ~Ai (26)

Been Pm just the moving platform position, without the orientation;

Pm = [Px Py Pz] (27)

The vector from the base of the fixed platform to the point Ci

~Ci =f ~PC + Pm (28)

The vector form point Bi to Ci is:

~BiCi = Ci − ~B (29)

The wrenches in axis-order are defined by vector multiplication of ~Ci and ~BiCi:

Li = [ ~Ci × ~BiCi, ~BiCi]
T (30)

Been Li the wrench $i:

$i = Li (31)

The normalized screw:

$̂i = $i/|$i| (32)

2.6.2 Power Inspired Index

This technique is developed using the screw theory, specifically the power or rate of work, to determine how close the
parallel manipulator is to a direct singularity (Pottmann et al., 1999). The power inspired measure determines closeness
to singularity through an optimization problem that results in a corresponding generalized eigenvalue problem. Using
this methodology it is possible to describe the instantaneous behaviour of the end effector near singularities (Wolf and
Shoham, 2003). Other measures are incorporated into a constrained optimization framework, e.g. the natural frequency
measure (Voglewede, 2004).

In this approach the objective function F ($̂, $
′

i=1, ...,6 ) to be optimized can be interpreted as the sum of the square of
the power Eq.(24) of each leg upon the end effector which is constrained to move on $(||ω|| = 1, h 6= ∞, a normalized
finite pitch twist; this interpretation may be done assuming unitary magnitude wrenches as normalized screws ˆ$

′
i ' $

′
i

F =
n∑

t=1

ˆ$′T $
′

(33)

with

$̂′ =
[
P ∗′

i Q
∗′

i R
∗′

i L
′

iM
′

iN
′

i

]T
; $ = [LMNP ∗Q∗R∗]

T (34)

where $̂′ (dependent on x position coordinates, specifically of Ci and Bi positions) and $ are given in axis and ray
order, respectively, and n is the number of limbs. Therefore, F may be expressed as

F = $TJT
x Jx$ = $TM$;M =

n∑
t=1

$
′
$

′T (35)

where M is called the Graminiam matrix.
Considering that the only unconstrained movements of the end effector, in a direct singularity, are finite pitch twists (no

pure translational movements are permitted) with magnitude Ψ = 1, the unitary twist magnitude, which is the constraint
of the optimization method, is given through the invariant normalization (Voglewede, 2004).

||$|| =
√
ω · ω =

√
L2 +M2 +N2 = 1⇒ ||$||2 = $TD$ = 1 (36)

where D = diag1, 1, 1, 0, 0, 0. Eq.(35) under the constraint Eq. (36) may be transformed to obtain the Lagrangian L,

L = $TM$− λ($TD$− 1) (37)

where λ is the Lagrangian multiplier. The minimization of the Lagrangian is performed by

∂L/∂λ = $TD$ = 1; ∂L/∂$ = (M − λD)$ = 0. (38)

ABCM Symposium Series in Mechatronics - Vol. 6 
Copyright © 2014 by ABCM

Part II - National Congress 
Section III – Robótica, Atuadores e Sensores

1080



The matrix expression in the parenthesis, for a nontrivial solution, has to be singular, i.e.

det(M − λD) = 0. (39)

This is an eigenvalue problem and we can compute the eigenvalues lambdai and correspondent eigenvectors $i.
Defining I as the 6× 6 identity matrix and ξ = 1/λ, Eq.(39) becomes

det(M − λD) = det(ξI −M−1D) = 0 (40)

which has only three roots ξi = 1/λi, i.e. the eigenvalues of [M−1D], due to the three null elements of D diagonal. Each
eigenvalue has a corresponding eigenvector $i that satisfies Eq.(38).

Since the objective function is non-negative, given that M is a square symmetric positive semi-definite matrix (Vo-
glewede, 2004), the end effector normalized twist which minimizes the supply power through the wrenches is the eigen-
vector $min associated to the smallest eigenvalue λmin. In this case one gets the minimum of F upon the end effector
moving on $min, see (36), as

F = ($min,
ˆ$
′
i=1, ...,6 ) = $TminM$min = λmin$TminD$min = λmin (41)

In direct singularity there is a twist $min for which none of the limb wrenches can do any work and then the minimum
of F , i.e. λmin, goes to zero. Out of a singularity, $min represents the less constrained twist and λmin is a power
based function measure that indicates the manipulator singularity closeness. It is worth remarking that δWmin =

√
λmin

represents the minimal power. The case of two or three similar or identical minimum eigenvalues means that wrenches
are in the intersection of two or three linear complexes, i.e. a linear congruence or a regulars respectively, and the end
effector gains two or three degrees of freedom (Campos et al., 2011).

2.7 INDEX EVALUATING

This technique is developed using the screw theory, specifically the power or rate of work, to determine how close the
parallel manipulator is to a direct singularity (Lenar et al. (1998); Pottmann et al. (1999). The power inspired measure
determines closeness to singularity through an optimization problem that results in a corresponding generalized eigenvalue
problem (Wolf and Shoham, 2003).

Been Li the Plucker line coordinates and x the resulting twist.

Figura 7: Gough-Stewart platform, the lines Li and the resulting twists (Wolf and Shoham, 2003).

In the case of parallel manipulators this is interpreted as the minimization of the instantaneous work generated by
a set of wrenches, given by Li , acting on a body instantaneously moving in a twist direction given by x. If a wrench
is acting on a rigid body such that it produces no work while the body is undergoing an infinitesimal twist, the two are
assumed to be reciprocal to each other and their reciprocal product is zero. This is the case in a singular configuration of
the robot. Consider the Gough-Stewart platform shown in "Figure 7". The rows of the Jacobian matrix of the manipulator
are composed of the Plucker coordinates of the wrenches acting along its limbs Li. Applying the method to this set of
wrenches while the platform is moving instantaneously along the twist direction given by x, the smallest Li determines
the direction along which the work generated by the set of wrenches is minimal. When the reciprocal product is zero,
there is no work generated by the set of wrenches when the platform moves in the twist direction given by x. We use this
physical interpretation of the reciprocal product of screws in order to investigate the behavior of a given robotics structure
in a given configuration (Wolf and Shoham, 2003).
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2.8 OPTIMIZATION

This section have a short explanation of the optimizations algorithms applied in this work and why the use of Hybrid
Optimization.

2.8.1 PSO

The particle swarm optimization (PSO) is a technique introduced by James Kennedy and Russell Eberhart in the
90s and emerged from experiments with algorithms that model the "social behaviour "observed in some species of birds
(Kennedy et al., 2001).

Particle Swarm (PSO) is a computational method that optimizes a problem by iteratively trying to enhance a candidate
solution for a given measure of quality. PSO optimizes a problem by having a population of candidate solutions , here
dubbed particles , and moving these particles around in the search space according to simple mathematical formulas on
the particle position and velocity . The motion of each particle is influenced by its best known site position, but is also
oriented towards the most known locations in the search space, which are updated as better positions are found by other
particles . This is expected to move the swarm to the best solutions (Kennedy et al., 2001).

PSO is a metaheuristic technique, as it makes little or no assumptions about the problem being optimized and can
search very large spaces of candidate solutions . However , as PSO metaheuristics do not guarantee an optimal solution
is always found . More specifically, the PSO does not use the gradient of the problem to be optimized (Kennedy et al.,
2001).

2.8.2 FMINCON

Fmincon is a gradient-based method that is designed to work on problems where the objective and constraint functions
are both continuous and have continuous first derivatives. (MATLAB R©)

There is no guarantee that the Fmincom will return a global minimum, unless the global minimum is the only minimum
and the function that is minimizing is continuous. As a method based on derivative may get remand to a local minimum
and not find the value of the global minimum.

However, with various starting points FMINCON terminates at different v values, some of which are only local
minima. Based on where FMINCON starts, it may terminate at the global minimum or at one of the local minima.
The optimizer gets ’remand in the local valley’ and can’t escape to reach the ’global valley’.One possible way to find a
global minimum is to run FMINCON with starting point in the ’global valley’. That why the use o PSO algorithm in the
optimization.

2.8.3 HYBRID OPTIMIZATION

Methods for optimizing general purpose, that is, they were not designed to solve specific optimization problems,
competitors must present some characteristics . Due to the possibility of local minima and the complexities of different
objective functions , it is necessary to incorporate strategies to make reliable algorithm (in terms of finding the global
minimum) while maintaining properties that lead to rapid convergence . One way to achieve these goals is through the
coupling of two or more different optimization algorithms, which have complementary characteristics, which results in
so-called hybrid algorithms. It is common to find hybrid algorithms involving an algorithm of type heuristic used to cover
the entire search space and identify the region where the global minimum is found , and an algorithm with mathematical
reasoning , said nonlinear programming , able to quickly reach the minimum , since the region has been identified. This
type of strategy improves reliability compared to methods nonlinear programming , because it is more likely to find the
global minimum , and increases efficiency compared with pure heuristic algorithms (Wang and Zheng, 2001). That the
reason this work use PSO algorithm and FMINCON function to search for optimum of this problem.

3. ALGORITHM AND OPTIMIZATION RESULTS

This work developed a algorithm in MATLAB R©to realize the 6-RUS robot optimization. The parameters to optimize
the orientation workspace are the angles α1,α2. See "Figure 8".

The program initially receives a pair of α angles and create the robot movement simulation though inverse kinematic
in all three orientation in the initial position. The screw theory is applied to establish the wrenches and twist to determined
de singularity index that is the system constrain. The index can not have values below 0.0293 which determines a singular
position.

The index minimum value is determined by evaluating the built robot prototype belonging to Udesc - Ceart in Flo-
rianopolis. Theoretically the index value is supposed to be zero, but due joints clearance the value of the index to be a
singularity is slightly higher. See "Figure 9".

The optimization algorithms are used to adjust the alphas value that maximize the rotation positives and negatives in
all three orientation axis, evaluating the index value. The program stars with an initial estimation of α angles. Then max
value of these rotations is defined, for this configuration, until the movement produce the minimal index. After this loop
the PSO algorithm is applied to estimate a new α pair with a better rotations values. It is the first applied optimization
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Figura 8: Base angular layout where design parameters are α1 and α2 (Campos et al., 2011).

Figura 9: Singularity index for a rotation in Y axis.

algorithm to escape form local minima. PSO try many α angles until it can‘t find better values. Then it return a pair as
the initial estimation to FMINCON. Below is the α values found by PSO:

PSO α1 α2

Values 119.4951 241.1497

This pair of alphas is near the optimum, as PSO can‘t guarantee the optimum. Then FMINCON stars with alphas
found by PSO and establish the optimum. See "Figure 10".

Figura 10: Graphical results from FMINCON.

Below the result α values found by FMINCON and the max orientation rotation positives and negatives of the robot:

FMINCON X Y Z α1 α2

Values 19.8278 18.02993 77.4263 120.3037 239.4492
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