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Abstract

This work deals with the formulation, analysis and computational simulation of non-local and rate depen-
dent plasticity models in one dimensional set. In the formulation, described within the continuum mechanics
scheme, the plastic deformation is viewed as an additional degree of freedom. The basic laws are: the principle
of virtual power and inequality of dissipation. A thermodynamically consistent theory is developed, in which
non-local and rate effects are accounted for by allowing constitutive dependence on the gradient and rate of
plastic deformation. The governing equations are obtained after combining the basic balances with the con-
stitutive theory. In particular, theories of plasticity with and without elastic region are obtained. A simplified
version of the theory with elastic region is subject to a linear stability analysis in order to obtain instability
criterion, a qualitative analysis showing that shear bands are associated with homoclinic (heteroclinic) orbit.
A computational simulation based on the finite element method and an Euler implicit scheme and staggered
algorithm is presented. The numerical results illustrate the accumulation of plastic deformation in narrow
bands.

Keywords: non-local plasticity, shear bands, rate dependent plasticity, continuum mechanics.

1 Introduction

Nowadays there is a renewed interest in the study of the phenomenon of plasticity. This occurs because
plastic deformation is a high dissipative problem and still remains not fully understood, and moreover,
because of its importance in the study of the mechanical behavior of structural components.
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There are an increasing interest in models which take into account effects not considered by the
conventional theories, such as microstructure, non-local effects and rate dependence. These important
issues are essential in the development of capable theories to represent the most diverse kinds of
plastic instability, a phenomenon with a rich phenomenology classified as transients (momentary) or
permanent (persistent), stationary or propagative. The most well known phenomena of instability are
the shear bands, Lüders’ bands and the effect of Portevin-Le Chatelier (PLC effect). The shear bands
occur after a certain increase of flow plastic, the material exhibits a softening and may occur strain
concentration in narrows bands, and once they take place they persist in the initial positions, and
hence it is classified as stationary instability permanent [1, 2]. The Lüders’ bands occur at a level of
constant stress and are classified as propagative and transient instabilities [3, 4]. The PLC effect is
associated with a negative strain rate, when a strain plastic is concentrated in narrow bands which
propagate through the sample in pico-second or few hours. This phenomenon refers to instability in
a form of repeated stress drops followed by periods of reloading, observed when tensile specimens
are deformed in a certain range of strain rates and temperatures. It is classified as propagative and
permanent instability [5–7]. There is an extensive literature about the diversity aspect of plasticity
see for example Aifantis [8, 9], Gurtin [10], Anand et al. [11], Borst [4], Sikora et al. [12], Wang [1],
Estrin [13], Kubin and Estrin [6].

To study the phenomenon of plastic instability in accordance with the formalism of modern contin-
uum mechanics [14], we elaborate the framework by introducing the basic balances, the free energy
imbalance and a theory constitutive. The plastic deformation is considered as an additional degree of
freedom, and by introducing the plastic gradient deformation, we take into account non-local effects.
We deduce the governing equations by considering microstructure processes and scale effect, within
the scheme given by Duda and Souza [15]. In addition the forces pattern, micro forces were introduced
with the assumptions of additive decomposition of the deformation into its elastic and plastic parts.

We consider as basic laws the principle of virtual work and the dissipation inequality, and combined
with thermodynamic consistent constitutive theory, we obtain the equations which govern the plastic-
ity theory. The balance of micro forces has resulted in two groups of kinetic laws and, with appropriate
choice, some classical theories and different phenomenon of plasticity could be boarded. In the second
part we carry out a qualitative analysis of the stationary problem to obtain an instability criterion, the
size of localization zones and the propagation velocity of plastic waves. We look for special solutions,
such as orbits which bound the points of saddle (homoclinic, heteroclinic), because they represent
the localization zones of deformation connecting two constant states of different deformations. Finally
we present the numerical results and illustrate the accumulations of plastic deformation in narrows
bands.

2 Theoretical framework

2.1 Preliminaries

Let be B a one-dimensional body identified with the fixed interval [0, L]. We denote x an element or
particle of B, and t a time instant. We denote D := [x1, x2] one typical part of B. A generic quantity
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of interest f is a regular function of x and t, with spatial and temporal derivates denoted by fx = ∂f
∂x

and ḟ = ∂f
∂t respectively.

The notation is showed in Table 1.

Table 1: Notation

t time ε deformation σext external stress

x position εe elastic deformation sint micro internal force

u displacement εp plastic deformation sext micro external force

y placement σ stress σc stress contact

v macroscopic velocity ξ micro stress ρ the mass density per unit length

The longitudinal motion of B is described by a mapping:

y(x, t) := x + u(x, t) (1)

In the micro processes, the micro kinematics is described by the elastic and plastic deformation
with additive decomposition:

ε(x, t) = εe(x, t) + εp(x, t) (2)

In the rate form: ε̇(x, t) = ε̇e(x, t) + ε̇p(x, t), where: ε̇(x, t) = ∂v(x,t)
∂x

By considering Eqs. (1) and (2) we conclude that two of the three fields y,εe and εp are independents.
We consider y and εp as independent kinetically descriptor. We define V := (v, vp) the velocity field,
V the virtual velocity space and V̄ := (v̄, v̄p) a generic element of V, where v̄ and v̄p are the virtual
velocities associated to display and plastic deformation respectively.

2.2 Basic laws

The principle of virtual power is used to generate the field equations and the boundary conditions,
corresponding to the basic force balances. For any part D ⊂ B and within a first-gradient theory, we
adopt the following prescriptions for the virtual power of the external and internal forces expended
on an arbitrary virtual velocity v̄:

• Virtual power of the external forces:

Pext(D, V̄ ) :=

x2Z
x1

(σextv̄ + sextv̄p)dx +
2X

i=1

(σc(xi)v̄(xi) + q(xi)v̄p(xi)) (3)

where the smooth field σc and σext describe contact and external forces; sext and q describe the
external and contact micro force.
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• Virtual power of the internal forces:

Pint(D, V̄ ) := −
x2Z

x1

�
σ

∂v̄

∂x
+ ξ

∂v̄p

∂x
+ sintv̄p

�
dx (4)

where the smooth field σ, ξ and sint describe internal interactions.
In Eqs. (3) and (4) we introduce the system for macroscopic and microscopic forces. The macro

force system, associated with y, is formed by the stress σ and contact force σc. The micro force system,
associated with the microstructure (plastic deformation), is formed by the micro-stress ξ, internal and
external micro forces ( sext and sint), and the contact micro force q.

The principle of virtual power [16] considers that for the each fixed time and part D:

Pext(D, V̄ ) + Pint(D, V̄ ) = 0 (5)

By considering Eq. (3), (4) and (5), we have:

x2Z
x1

�
−σ

∂v̄

∂x
− ξ

∂v̄p

∂x
− sintv̄p + σextv̄ + sextv̄p

�
dx+

2X
i=1

(σc (xi) v̄ (xi) + q (xi) v̄p (xi)) = 0 (6)

In the local form:8><>: ∂σ

∂x
+ σext = 0

∂ξ

∂x
+ sext − sint = 0

(
σ(x2) = σc(x2), σ(x1) = −σc(x1)

ξ(x2) = q(x2), ξ(x1) = −q(x1)
(7)

We also consider as basic a mechanical version of the second law thermodynamics. Namely ψ the
free energy per unit of length, we have:

d

dt

Z
D

ψdx6Pext(D, V ) (8)

for each part D ⊂ B. After using the principle virtual power, this version localizes into the dissipation
inequality:

ψ̇ 6 σε̇ + sintε̇p + ξṗ = σε̇e + πε̇p + ξṗ (9)

where p := ∂εp

∂x and π := sint + σ

2.3 Constitutive theory

In the absence of internal links, the inequality of dissipation Eq. (9) suggests that constitutive pre-
scriptions should be given for ψ, σ, ξ and π. We consider the list (εe, εp, ε̇p, p) as the independent
variables, i.e.:
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ψ = ψ̂(e, ε̇p), σ = σ̂(e, ε̇p), ξ = ξ̂(e, ε̇p), π = π̂(e, ε̇p) (10)

where e := (εe,εp,p). These response functions are considered smooth, excepting π̂. In the following
case 1, π̂ is smooth for parts (discontinuous in ε̇p = 0), and in the case 2, π̂ is smooth everywhere
(continuous on ε̇p = 0), and then, π is not constitutively determined when ε̇p = 0 .

Using the procedure of Coleman-Noll [17] in the inequality (9), we get the following restrictions:

∂ψ̂

∂ε̇p
= 0, σ̂ =

∂ψ̂

∂εe
, ξ̂ =

∂ψ̂

∂p
(11)

And, the response function π̂ satisfies the reduced inequality:�
π̂ − ∂ψ̂

∂εp

�
ε̇p > 0 (12)

Therefore, from Eq. (11), we have: ψ = ψ̂(e), σ = σ̂(e), ξ = ξ̂(e)
By denoting π̂d := π̂ − ∂ψ̂

∂εp
in Eq. (12), the reduced inequality can be written as:

π̂d(e, ε̇p).ε̇p > 0 →
(

π̂d(e, ε̇p) > 0 if ε̇p > 0

π̂d(e, ε̇p) 6 0 if ε̇p < 0
(13)

By considering the micro forces balance and the constitutive equations, we obtain the kinetic equa-
tion for the plastic deformation. In general we have:

π̂d(e, ε̇p) = â(e, ε̇p) + b̂(e, ε̇p) (14)

where:

â(e, ε̇p) =

(
a+(e) if ε̇p > 0

a−(e) if ε̇p < 0
b̂(e, ε̇p) =

(
b+(e, ε̇p) if ε̇p > 0

b−(e, ε̇p) if ε̇p < 0
(15)

The signals (±) are dependent of the ε̇p signal. We consider two cases: the case 1, with elastic region,
and the case 2 without.

Case 1: With elastic region ( â 6= 0).

This case is separated in two sub-cases:
Sub-case 1a: We consider a theory of plasticity rate independent, and then the kinetic equation is

given by:

σ̂(e)−
�

â(e, ε̇p)− ∂2ψ̂

∂x∂p
+

∂ψ̂

∂εp

�
= 0 (16)

Sub-case 1b: We consider a theory of plasticity rate dependent, and then the kinetic equation is
given by:
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b̂(e, ε̇p) := σ̂(e)−
�

â(e, ε̇p)− ∂2ψ̂

∂x∂p
+

∂ψ̂

∂εp

�
, if ε̇p 6= 0 (17)

Case 2: Rate dependent, without elastic region ( â = 0).

In this case the dissipative response function is smooth and thermodynamically ensures that π̂d is
zero when ε̇p = 0. In this case the micro forces balance provides directly the equation that governs
the plastic deformation, without additional constitutive assumptions, thus:

b̂(e, ε̇p) := σ(e)−
�

∂ψ̂

∂εp
− ∂2ψ̂

∂x∂p

�
, if ε̇p 6= 0 (18)

Observation: By choosing adequately, the response functions â and b̂ can represent some of the classic
theories of plasticity, as for instance, different behavior in traction and compression, rate independence,
perfectly plastic material, isotropic hardening, Perzynas’ model, viscous-plastic regularization, effect
of Baushinger, shear bands, effect of PLC and others.

2.4 Simplified model

In this simplified model we are interested in the sub-case 1b, when there is plastic deformation by
traction, i.e., ε̇p > 0. Let us consider a bar, fixed at one end and tensioned at the other.

We consider the following free energy:

ψ(e) =
Eε2

e

2
+

c

2
p2 (19)

where E is the Young module, and c is the diffusion coefficient related with the micro-scale displace-
ment. The first term represents the strain energy, and the second term is the interface energy. In Eq.
(17) we define â(e) = go(εp), b̂(e, ε̇p) = g1(ε̇p), g1(0) = 0, where go and g1 are smooth functions and
differentiable in almost everywhere.

With these assumptions we have: (
σ = Eεe

ξ = c
∂εp

∂x

(20)

Therefore the micro force balance is:

c
∂2εp

∂x2
+ σ − go(εp)− g1(ε̇p) = 0 (21)

By considering the body force as inertial, the external force takes the form σext = −ρü, with ρ > 0.
From the balance laws and the above assumptions we have the following relations:
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σ = Eεe = E(ε− εp)

ε = εe + εp

∂σ

∂x
= ρü

c
∂2εp

∂x2
− go(εp)− g1(ε̇p) + σ = 0

(22)

By taking the derivative of Eq. (22) 1, we have the following equations system:8>><>>:E

�
∂2u

∂x2
− ∂εp

∂x

�
= ρü

c
∂2εp

∂x2
− go(εp)− g1(ε̇p) + E

�
∂u

∂x
− εp

�
= 0

(23)

2.4.1 Qualitative analysis of the traction problem

Motivated by the work of Kubin et al. [6], Estrin [13], Brechet et al. [7], Coleman et al. [2] and Anand
et al. [11], we consider a qualitative analysis of Eq. (23) in the quasi-static case. We start finding some
trivial solutions. In this case, Eq. (23) is reduced to the nonlinear differential equation:

c
∂2εp

∂x2
− go(εp)− g1(ε̇p) + σ(t) = 0 (24)

Trivial solutions

(a) There is a stationary uniform solution [2, 7, 14] of Eq. (24). Thus, the solution satisfies:

c
d2εps(x)

dx2
− go(εps(x)) + σ0 = 0 (25)

where σo is a constant prescribed stress.
(b) There is a steady state homogeneous solution [1, 6, 18] of Eq. (24). Thus, the solution satisfies:

go(εps(t)) + g1(ε̇ps(t))− σ(t) = 0 (26)

(c) There is a stationary homogenous and uniform solution [1, 12] of Eq. (24) satisfying the rela-
tionship:

go(εps)− σ0 = 0 (27)

2.4.2 Stability analysis

We analyze the plastic instability by linearizing Eq. (24) around a homogeneous state εps(t). We
consider solutions of the form: εp(x, t) = εps(t) + δεp, where δεp(x, t) = δεoe

ikx+ωt is a small
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perturbation, δεo is the initial perturbation, k is the wave number and ω is the amplification rate or
attenuation, that determines the growth or decline of the disturbance. By substituting this solution
in Eq. (24), we have: �

sω + h + ck2
�

δεp = 0, then ω = −h + ck2

s
(28)

where: h := ∂go(εps )
∂εp

and s := ∂g1(ε̇ps )
∂ε̇p

.
The linear stability is guaranteed when ω < 0, otherwise we have instability, which occurs when:(

s < 0 and h + ck2 ≥ 0

s > 0 and h + ck2 ≤ 0
(29)

We get the following types of instability:
• Type H: s < 0,h < 0, c > 0, h + ck2 ≤ 0
• Type S: s < 0,h > 0, c < 0, h + ck2 ≥ 0 or just when s < 0.

Observations:
(a) The value of h is not necessarily positive in the inequality (29).
(b) It is possible to determine the length of the critical wave Lc = 2π

kc
when c and h have opposite

signs. The parameter kc :=
È
−h
c is called critical wave number because can occur a bifurcation

or the deformation can become heterogeneous. The length Lc, called internal characteristic length
scale, appears in different studies of wave dispersion and traveling waves.

2.5 Shear bands

After a certain increase of plastic flow, the material exhibits deformation by softening and may occur a
concentration of strain in narrow bands [7, 9]. In Eq. (23) we consider g1(ε̇p) = sε̇p and go a continuous
function, differentiable and not monotonous, so that go(0) = σy, ( σy is yield stress), and s a positive
parameter. Therefore we get the shear bands model:

c
∂2εp

∂x2
− go(εp)− sε̇p + E

�
∂u

∂x
− εp

�
= 0 (30)

The evolution of the bands occurs when g′o(εp) < 0 [12]. This type of deformation can be seen in
soft steel, polymers and various metals, such as: Cu 4% Si, Al 0.7% Li, etc.

Motivated by the work of Coleman et al. [2], Anand et al. [11] and Sikora et al. [12], we are interested
in the stationary uniform solution of Eq. (30), assuming that the diffusion coefficient c > 0. The Eq.
(30) is equivalent to the first order system:8><>: dεp

dx
= w

dw

dx
=

1
c

(go(εp)− σo)
(31)
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We say that an equilibrium point is homogenous if it is constant related with x, i.e., when w =
0, go(εp) = σo. Therefore, the equilibrium points are (εps , 0). The first integral of the system is given
by:

K =
w2

2
+ V (εp) (32)

where K = K(εp, w) is constant through any solution, and the function V is obtained through the
integral:

V (εp) :=
1
c

εpZ
εpo

(σo − go(ςp)) dςp (33)

The system (31) is the Hamiltonian type. The first integral corresponds to total energy function,
where the kinetic energy is given by Ec := w2

2 , and the potential energy is given by V . From Eqs. (32)
and (33) we get:

dεp

dx
= w = ±

È
2(K − V (εp)) (34)

Then:

x =

εp(x)Z
εp(0)

dζpÈ
2(K − V (ζp))

(35)

As the kinetic energy is not negative K > V (εp), for different values of K is possible to draw the
trajectories in the phase-plane (level curves).
Comments: The point (εps , 0) is an equilibrium point if and only if g(εps) = σo (or V ′(εp) = 0). These
points represent the equilibrium homogeneous stationary solutions, where the system stops moving in
the phase-space.

• If K = min V (εp), the solution of Eq. (31) corresponds to an equilibrium point.
• If min V (εp) < K < max V (εp), the system (31) admits periodic orbits with characteristic

length Lc = 2π
È

c
−h .

• If K = max V (εp), the solution of Eq. (31) is an invariant manifold that corresponds to homo-
clinic (heteroclinic) orbits. Each homoclinic orbit represents a homoclinic shear band that starts
and ends at the some value to slip. And each heteroclinic orbit represents a shear band connecting
two homogeneous stationary states and uniforms for different deformations.

2.6 Numerical results

In this section we describe some numerical simulations of the shear bands Eq. (30). We consider a
bar of 100 mm. length, with cross section 1.00 mm2, fixed at one end. We simulate the softening by
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prescribing a monotonous displacement at free end (uL(t) = a) and plastic deformation in both ends
(εp(0, t) = εp(L, t) = 0). We consider the initial conditions: u(x, 0) = 0, u̇(x, 0) > 0, εp(x, 0) = 0.

The used parameters are showed in Table 2.

Table 2: Parameters

Elasticity modulus (Pa) E = 20 · 109 Yield stress (Pa) σy = 2 · 106

Softening modulus (Pa) h = −2 · 109 Kinematic modulus (1/s) s = 2.103

Diffusion coefficient (N) c = 5 · 104 Loading parameter (mm) a = 0.125

Figures 1-6 display the results for different values of diffusion coefficient c. The Figures 1 and 2 show
the plastic deformation field and the stress strain diagram, respectively, for the boundary conditions
described previously. In the Figure 1 we can observe a concentration of plastic deformation at the
middle of bar, and then the Figure 2 exhibits the stress strain diagram at this point, where we can
see the softening effect. Figures 3 and 4 show the stress evolution at the middle of the bar and the
displacement field, respectively. It is interesting to observe that the diffusion coefficient affects basically
the localization of plastic deformation.

 
Figure 1: Plastic deformation field.

 
Figure 2: Stress strain diagram at the
middle of the bar.
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Figure 3: Stress evolution at the middle
of the bar.

 
Figure 4: Displacement field.

We consider in Figures 5 and 6 as initial condition a plastic deformation of 0.09 prescribed in the
middle bar. Figure 5 shows the plastic deformation field with this initial prescribed value, whereas the
Figure 6 show the stress strain diagram at the middle of the bar.

 
Figure 5: Plastic deformation field.

 
Figure 6: Stress strain diagram at the
middle of the bar.

The Figures 7 and 8 display different curves related with different values of prescribed displacement
at the free end a. As the latter case, a plastic deformation of 0.09 was prescribed in the middle
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bar as initial condition. Since the diffusion coefficient is the same for all curves, we do not observe
different effects in the localization of plastic deformation in Figure 7, only the effect of the prescribed
displacement. However, in contrast with the Figure 6, Figure 8 displays distinct curves in consequence
of different prescribed displacements.

 
Figure 7: Plastic deformation field.

 
Figure 8: Stress strain diagram at the
middle of the bar.
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