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Abstract

This work addresses the determination of natural frequencies of three typical MEMS (Microelectromechanical
Systems) microresonators comb-drive. The microstructures are understood as modular systems, composed by
rigid masses coulped to elastic beam elements. The structure stiffness is calculated on the base of deflection
deformation energy of elastic beams. The equivalent mass is given by the equality of the kinetic energy of the
microstructure system with the one of a simple mass-spring system in harmonic vibration. Then the natural
frequencies are obtained analytically in terms of the structure sizes and materials parameters. Numerical modal
analysis with the software ANSYS showed good agreement with analytical results. Also it was discussed the
influence of the rigidities of structural elements such as plates and beams on the frequencies and vibration
modes. To achieve the expected frequencies and vibration modes its important the rigidity of microstructures
and stiffness of elastic elements, therenfore the plates and beams shall be move in the same plane as expected.
The methods presented in this work could be good for the determination of dynamic parameters of various
MEMS structures.
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1 Introduction

Microelectromechanical Systems (MEMS) are micro-manufactured structures, enabling functions of
control, sensing and actuation [1]. The dynamic behavior of mechanical structures of MEMS has influ-
ence on the electrical responses through energy transduction principle [2]. Therefore, the determination
of mechanical parameters such as elasticity, natural frequency and damping are of great technological
importance to characterization and optimization of these devices. In this work we present a method
under the framework of solid vibration theory [3] and strength of materials to determine natural fre-
quency of laterally drive resonator MEMS comb-drive [4]. The analytical results are compared with
numerical ones of finite element method (FEM) using the commercial software ANSYS. Three typical
structures of MEMS (Figure 1) are analyzed: Typology 1 (T1), composed of two cantilever beams and
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a central mass (Fig. 1 (a)), Typology 2 (T2), four cantilever beams and a central mass (Fig. 1(b)) and
Typology 3, a central mass, two lateral masses and eight beams (Fig 1 (c)).

 
elements of attachment (anchors)

(b)- Typology T2

(a) - Typology T1

masses side

elastic elements

(c)-Typology  T3

central mass 

Figure 1: Typologies examined and basic elements: central mass, anchors, elastic elements and masses
side.

2 Methodology

The natural frequency of a mass-spring system is expressed by the Equation (1):

fn =
1
2π

r
k

m
(1)

where k is the stiffness constant and m the mass.
Planar MEMS resonators are made of continuous structures in which the determination of reso-

nant frequency is relatively complex. However, it is possible to substitute the original system for a
simple mass-spring system by calculating structure stiffness and kinetic energy once are establish a
kinematical equality for the displacements of systems, typology and mass spring (Fig. 2).

The total kinetic energy of a typology structure can be obtained by the sum of kinetic energy
of the mass-beam elements. As the symmetry of structural geometry and boundary conditions, the
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parameters K and ME can be calculated considering the typologies as modular systems, composed by
coupling of basic mass-beam elements, as illustrated in the Figure 3.

  

M E1 

K 1 

t 

y 

M 1 

m 1 m 1 x 

y 

a 

l l 

ω 

Figure 2: Kinematical equivalency between original system of typology T1 with a mass-spring system;
m1 is the mass of elastic element, M1 is the mass of rigid element, K1 the stiffness constant of spring,
ME1 the equivalent mass, ω is the angular speed, a the maximal displacement and t time.

 
Figure 3: Modular structures of T1, T2 and T3.
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3 Stiffness constant of mass beam element

The total stiffness constant of one typology, K, is obtained by the deflection of the beam end subjected
to a concentrated force and connected to the central mass. The displacements in direction y are given
as the deflection curve of the elastic beam. The concepts of connecting beams in series and in parallel
allow the stiffness of modular systems to be a function of several basic mass-beam elements. The
stiffness constant of a basic mass-beam element illustrated in the Fig. 4 is obtained by division of the
force by the displacement at the position in the direction of the applied force, that is Ke = Pe/ |yB |.

 
Figure 4: Load, deflection and boundary conditions for the elastic element beam AB. The displacement
yB will be a function of load Pe, length le, elasticity module Ee and inertial moment of the transversal
section Ie.

When the force Pe is applied, the energy potential is stored in the form of elastic deformation energy
in the entire beam. According to the elastic beam theory, the deflection curve is given by:

y(x) = − Pe x2

EeIe6

�
3
2
le x

�
(2)

From above, we can get the stiffness constant of basic element beam:

Ke =
12EeIe

l3e
(3)

4 Equivalent mass of mass-beam element

A simple method to obtain the equivalent mass, ME , is to make a kinematics analogy between the
original system and the equivalent system (Fig. 5). The equivalence principle will be that the original
system and equivalent system have the same dynamic effect, i.e. the same kinetic energy. The kinetic
energy of the original system can be obtained by the sum of the kinetic energy of moving parts.
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Figure 5: Equivalence between the basic mass-beam element to a simple mass-spring. mv - beam mass
and mB - rigid mass.

We separate the kinetic energy of vibration elements into two components: EmB

C , kinetic energy of
the rigid body at the end of the beam and El

C , kinetic energy of the elastic beam. For the rigid body:

EmB

C =
1
2
mBv2

B (4)

The kinetic energy of the elastic beam AB can be described by the sum of the kinetic energy of the
small elements, that is:

El
C =

1
2

nX
i=1

v2
i ∆mi

∼= El
C(t) =

ρA
2

lZ
0

v(x, t)2dx (5)

where A is the area of cross section of the beam and ρ the density of the material, supposedly constants.
Assuming that the beam movement in the direction y is of the form described as the static deflection
curve, Eq. (2), the total kinetic energy of vibration elements is

Ee
C = EmB

C + El
C =

P 2l6

288E2I2 ω2cos2(ωt + θ)
�

13mv

35
+ mB

�
(6)

where θ is the phase angle and ω the angular velocity of vibration. From above, we get the mass
equivalent of the basic element of Figure 7 by assuming that the mass spring system vibrates with the
magnitude equal to the maximum deflection:

Me
E =

�
13mv

35
+ mB

�
(7)
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5 Analytical results

We obtained the stiffness constant of each typology using the stiffness constant of the basic beam
element (Eq. (3)) and the equivalent stiffness concept of beams connected in series and in parallel.
The separation of a continuous structure into same modular elements, shown as Figure 5, simplifies
the calculation of equivalent stiffness and equivalent mass of a typology.

The natural frequency of each typology is obtained through substituting the equivalent stiffness
and equivalent mass into the Equation (1). Tab. 1 lists the analytic results of stiffness constant, K,
equivalent mass ME and natural frequency fn in terms of the dimensions, mass e materials of typologies.

Table 1: Systematization of analytic results: stiffness constant, equivalent mass and natural frequency.
Where w, hand l are the width, thickness and length respectively; MV is the mass of all beams
of a given type; MC is the central mass; ML is the sum of the two lateral bodies of the typology
T3.
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6 FEM simulation

Using the software ANSYS, we got the natural frequencies from modal analysis. The simulations were
conducted for silicon monocrystalline microstructures (Tab. 2). The parameters of size, mass and
excitement harmonic are presented in Tab. 3.

We are interested in frequencies of resonance and respective modes of vibration. Two cases for T3
were simulated: T3 (a) and T3 (b), having differences in the dimensions and weight of the lateral
and central masses, but same masses. However, the dimensions, weights and thicknesses of beams
are same for each case, so that their analytical results are identical. Since obtaining of analytical
formulations considered the central mass and lateral masses as lumped ones, no deformation energy
of these elements was considered. The purpose of making comparison between two conceptions of T3
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is to check the influence of the rigidity of mass central and lateral masses on the vibration modes and
respective natural frequencies.

Table 2: Mono-crystalline silicon data.

Description Symbol Value Conversion

Young Module E 140 [GPa] 1,4 x 105 [kg.µm−1.s−1]

Density ρ 2,33 [g.cm−3] 2,33 x 10−15 [kg.µm−3]

Table 3: Dimensions and loading.

Description Symbol Value

Length of the beams l 200 µm

Width of the beams w 2 µm

Thickness of the all structure h 2,1 µm

Central mass MC 5,0887 x 10−11 kg

Lateral mass of T3 ML 2.6911 x 10−12kg

Harmonic excitement amplitude F0 0,14 µN

Fig. 6 shows the graphic results of the ANSYS for the first mode of vibration of T1 and T2. It can
be seen that the deflections of beams are in agreement with the analytical models for the first mode
of vibration, that is, the deflection curves of the two beams are close well to the curve described by
the Eq. (2).

The modal analysis of T3 (a) showed a distinct behavior from T1 and T2. The first mode (the
left illustration in Fig. 7) is characterized by a rotational movement around the mass center; also the
strain of sidebars is considerable. For T3 (a), the vibration mode that best matches the analytical
models was the 3 rd mode, as shown by the right illustration in Figure 7. However with the size of T3
(b), the first mode of vibration was in agreement with the analytical result (Figure 8).

The numerical and analytical results of natural frequency are compared in Table 4. We can see
good coincidences between the analytical results and the numerical ones, except for T3(a). The large
difference for T3 (a) is owing to the low rigidity of the lateral rods, whose horizontal displacement x

is greater than the one of T3(b) (Figure 9).
Calculation of elastic strain energy confirmed that the lateral rods of T3(a) have experienced notable

deformation. The ratio of the elastic strain energy of the lateral rods to the total elastic strain energy
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Figure 6: First vibration mode of T1 and T2.

  
Figure 7: First (left) and third (right) modes of vibration of T3 (a).

of the structure is about 6.7% for the case of T3(a) but only 0.68% for T3(b). The notable deformation
violated the assumption of rigidity masses for the analytical models and resulted in the large difference
in the analytical and numerical natural frequencies.
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Figure 8: First vibration mode of T3 (b).

Table 4: Comparison of natural frequencies.

Typology franalítical [Hz] fr ANSYS [Hz] difference [Hz] relative difference [%]

T1 16869 16843 26 0,15

T2 23532 23495 37 0,16

T3 (a) 15896 14905 991 6,23

T3 (b) 15896 15887 9 0,05 
 

Figure 9: Displacement towards x in T3 (a), left, and shifts towards x in T3 (b), right. The scale is
16 times higher in relation to the values of the legend.

7 Conclusion

The MEMS sided resonator comb-drive can be modulated by such a structure consisting of elastic
beams and rigid masses. The natural frequency can be obtained by equivalent mass-spring systems.
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Depending on the structure typology, the equivalent stiffness can be determined from springs connected
in parallel and in series. The results obtained by the software ANSYS confirm the validation of
analytical formulation, deduced from equivalent systems. The analytical formulation obtained in this
work can be used in the design of MEMS. The method and the concept of equivalent systems proposed
can be extended to other types of MEMS. However, to achieve the desired mode of lateral vibration,
the mass elements must have sufficient rigidity. This should be paid high attention in the design or
manufacture of MEMS.
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