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Abstract

This paper presents the formulation of a coupled continuum model for deformation and solute diffusion applied
in a cylindrical geometry. The formulation is carried out within the framework of the multifield continuum
mechanics, where, in addition to the standard fields, extra fields are introduced in order to describe diffusion
processes. The theory is singled out and subjected to a numerical implementation based on the finite element
method, backward Euler scheme and an operator-split algorithm. A numerical example is given to illustrate
the capabilities of the theory to describe the process of constant surface potential.
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1 Introduction

In 1878 [1] introduced the idea of a solid which also contains fluid components, whereby a fluid can
enter into, move independently through and distort the solid, which otherwise is conserved and behaves
elastically. As indicated by [2], a genuine example of this kind of body is provided by interstitial solid
solutions at sufficiently low temperatures, with host and interstitial species playing the role of solid
and fluids, respectively. Additional examples can be found in the fields of geology, polymer science and
metallurgy, as pointed out by [3], who extended Gibbs’ idea by allowing solid diffusion. This extension
is basic for the modern understanding of equilibrium and diffusion kinetics in solid solutions under
stress (see [4] and [5]) as well as for the unified treatment of atomic transport given by [6] (see also
[7]).

Particularly, hydrogen in metals provides a large topic of material science, which has attracted
considerable interest due to its several applications, such as palladium and palladium-alloy membranes
used for hydrogen separation and purification, as described by [8]. These membranes provide this
efficient application based on the high solubility and very fast diffusion of the hydrogen in metal-
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hydrogen systems. The experiments are generally performed by using tubular membranes, where the
initiations of permeation is obtained by gaseous atmospheres of hydrogen at the external surface. [9]
have investigated the effect of chemical stress on diffusion in a hollow cylinder for plane strain case,
and [10] have concluded that the geometric approximation of modeling thin cylindrical membranes as
planar structures fails in the presence of stress-induced diffusion. Some specific boundary conditions
have been investigated in the diffusion-induced stress in a hollow cylinder by [11].

Specifically, the purpose of this work is to present a framework based on the formalism of continuum
mechanics for the description of solute diffusion, solid-induced deformation applied in a cycilindrical
geometry. In accordance with the formalism of modern continuum mechanics (see [6]), we elaborate
the framework by introducing the following ingredients: basic balances; free energy imbalance (the
second law of thermodynamics) and constitutive theory. We consider as basic the balances of mass
for solid and solute, and the balances of forces conjugated to the selected independent kinematical
fields, namely solid displacement, solute flow and solute density. The free energy imbalance accounts
for energy inflow due to both power expended by all external forces and solute supply, a contribution
through which the chemical potential is introduced. The constitutive theory is based upon the following
assumptions: additive decomposition of the solid strain into its elastic and solute-induced parts; the
dissipation is due degradation and diffusion; the set of constitutive variables includes elastic strain
and solute density. Finally, the underlying governing equations of the framework are obtained by
merging the aforementioned ingredients. In particular, the equation for the solute flux follows from
the corresponding conjugated force balances, whereas the equation for the chemical potential follows
from the solute density conjugated force balance.

The present development is similar to that used by [12] in that the solute density and solute flow
are considered as independent kinematical descriptors. In particular, the use of the solute density as
an independent degree of freedom was inspired on [13] (see also [14]). A preliminary version of this
work was presented by the authors in [15].

2 The continuum model

2.1 Preliminaries

Let us consider a continuum hollow cylinder C with inner radius Ri , outer radius Re and lenght L.
The cylindrical coordinates system standard are (r, θ, z), but for simplicity the hollow cylinder can
be treated as an one-dimensional problem, so that we consider only the radial coordinate r .

Therefore, a generic scalar field quantity α(r, t) has temporal derivative denoted by: α̇ :=
∂α

∂t
and

its gradient is defined as: ∇α :=
∂α

∂r
er , where er is the unity vector in the radial direction.

A generic vector field v(r, t) , defined as: v(r, t) := v(r, t) er , has the temporal derivative given by:

v̇ :=
∂v

∂t
er , and its gradient is given by:
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∇v :=

26664 ∂v

∂r
0 0

0
v

r
0

0 0 0

37775 (1)

and the divergence is given by:

Divv :=
∂v

∂r
+

v

r
(2)

A generic tensor field S(r, t) is given by:

S :=

2664 Sr 0 0

0 Sθ 0

0 0 Sz

3775 (3)

and the divergence is given by:

DivS :=

2664 ∂Sr

∂r
+

Sr − Sθ

r
0

0

3775 (4)

We consider that C contains two components, one that is conserved and acts as a framework through
which the other moves independently. For definiteness we name them solid and solute, respectively,
whose densities per unit lattice volume are denoted by ρS(r, t) and ρ(r, t). For posterior reference we
define the solute concentration c as:

c :=
ρ

ρS
. (5)

Besides, the solid can undergo deformation, described by strain tensor field E(r, t) and the dis-
placement field u(r, t) := u(r, t) er , given by:

E :=
1
2
(∇u +∇uT ) −→

2664 Er 0 0

0 Eθ 0

0 0 0

3775 :=

26664 ∂u

∂r
0 0

0
u

r
0

0 0 0

37775 (6)

2.2 Basic laws

Since the solid is conserved, it follows from its mass balance that ρ̇S = 0. Therefore we assume
henceforth that ρS is given. On the other hand, the mass balance for the solute yields the local field
equation:
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ρ̇ = −Div J + h, (7)

where J is the vector field that represents the solute flux and h the external solute supply. The latter
is assumed to be given but otherwise arbitrary.

Now we use the principle of virtual to power to obtain the field equations and the boundary con-
ditions corresponding to the basic force balances of the theory. Firstly, we have to decide on which
kinematical description to be adopted and then to prescribe two functionals, namely the virtual power
of the external forces and the virtual power of the internal forces ([16]). These are considered below.

We consider u, ρ and J as independent kinematical descriptors and, for a fixed time, we define a
generalized virtual velocity v̄ as the list (ū, ρ̄, J̄) of smooth time independent fields on C. The set of
virtual velocities is denoted by V, which is assumed to contain the realizable velocity v = (u̇, ρ̇, J).
We remark that J is a rate-type variable.

For any part P = (R1, R2) of C we adopt the following prescriptions for the virtual power of the
external and internal forces expended on an arbitrary virtual velocity v̄:

• Virtual power of the external forces

Pe(P, v̄) :=
Z
P

se · v̄ dV +
Z

∂P
t · v̄ dA, (8)

where the smooth vector fields t and se describe contact and body interactions, respectively.
The infinitesimal quantities are: dV := r dr dθ dz and dA := (Ri or Re) dθ dz.

• Virtual power of the internal forces

Pi(P, v̄) := −
Z
P

�
S · ∇v̄ + si · v̄

�
dV, (9)

where the smooth tensor field S and vector field si describe internal interactions.
The four-tuple lists of quantities denoted by S = (T, Γ, Λ) , si = (bi, γi, λi) and se = (be, γe, λe)

are related to the fields u, ρ and J , respectively. The Principle of Virtual Power (see, for instance,
[16]) states that for each part P:

Pi(P, v̄) + Pe(P, v̄) = 0 ∀ v̄ ∈ V. (10)

The above statement in addition with standard arguments, furnishes the field equation:

DivS− si + se = 0 in C s = Sn in ∂C, (11)

with the understanding that above equations hold componentwise. Therefore, we arrive at the following
set of force balances with the corresponding field equations:

• displacement-conjugated force balance
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DivT− bi + be = 0 in C t = Tn in ∂C, (12)

where T , be and bi are the motion conjugated stress tensor, external body force and internal
body force, respectively, whereas t is the tractions at the boundary of C. It can be shown that
bi is equal to zero since the internal power must be frame invariant;

• solute-conjugated force balance

DivΓ− γi + γe = 0 in C γ = Γ · n in ∂C, (13)

where Γ, γe and γi are the solute density conjugated stress vector, external body force and
internal body force, respectively, whereas γ is the tractions at the boundary of C;

• flux-conjugated force balance

DivΛ− λi + λe = 0 in C λ = Λn in ∂C, (14)

where Λ, λe and λi are the flux conjugated stress tensor, external body force and internal
body force, respectively, whereas λ is the tractions at the boundary of C;

2.2.1 Free energy imbalance

We also consider as basic a mechanical version of the second law of thermodynamics, namely the free
energy imbalance. It asserts that (see [6]):

d

dt

Z
P

ψ dV ≤ Pe(P,v) +
Z
P

µhdV, (15)

where ψ is the free energy density, Pe(P,v) the power expended by all external forces and µ is the
chemical potential. After using the principle of virtual power, this version localizes into the dissipation
inequality:

ψ̇ ≤ T · Ė + Γ · ∇ρ̇ + (γi + µ) ρ̇ + (Λ + µI) · ∇J + λi · J (16)

3 Constitutive theory

The first constitutive assumption adopted here is the additive decomposition of the strain E,

E = Ee + Es, (17)

into its elastic Ee and solute induced Es parts, the latter given by:

Es = η (c− cr)I, (18)

where η is a positive parameter and cr a reference concentration. It follows then that the dissipation
inequality (16) can be written as:
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ψ̇ ≤ T · Ėe + Γ · ∇ρ̇ +
�

γi + µ +
η trT

ρS

�
ρ̇ + (Λ + µI) · ∇J + λi · J (19)

Based on the inequality (16), we consider constitutive equations of the form:

ψ = ψ̂(p), T = T̂(p), Γ = Γ̂(p), γi + µ +
η trT

ρS
= γ̂(p), Λ + µI = Λ̂(p), λi = λ̂i(p), (20)

where p represents the list of constitutive variables. We assume that:

p := (Ee, ρ| {z }
e

, J) (21)

where e and J stand for equilibrium and non-equilibrium, or dissipative, variables. We assume that
the response functions in (20) are smooth.

Following the Coleman-Noll procedure (see, for instance, [17]), we require that the constitutive
responses must be such that the dissipation inequality (16) holds identically for whatever (ė, J̇,∇ρ̇,∇J)
at whatever (e, J) . Hence we conclude that:

• the constitutive function ψ̂ is independent of the non-equilibrium variable J, i.e., ψ̂(e, J) = ψ̂(e);
• the equilibrium relations

T̂ =
∂ψ̂

∂Ee
, Γ̂ ≡ 0, γ̂ =

∂ψ̂

∂ρ
, Λ̂ ≡ 0 (22)

hold;
• the internal dissipation inequality

λ̂i(p) · J ≥ 0 (23)

must hold for whatever J.
Therefore, the constitutive theory is characterized by the constitutive functions ψ̂ and λ̂i. The

former is independent of J , whereas the later must comply with (23).
The cylinder is considered in a fixed reference configuration at uniform temperature T with constant

value for the solid density ρS . The densities ρS and ρ are given in terms of number of atoms or
molecules per unit lattice volume, consequently, the solute concentration c =

ρ

ρS
is measured in

number of solute atoms per number of solid atoms. Hence, we assume the following free energy and
dissipative response:

i) Free energy response:

ψ̂(Ee, ρ) =
λ̄

2
(trEe)2 + µ̄|Ee|2 + kBTρ

�
ln
�

ρ

ρS

�
− 1
�

, (24)

where the first two terms correspond to the classical elastic strain energy, and λ̄ and µ̄ are
the Lame parameters. The last term represents the classical entropic contribution to the free
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energy of a dilute ideal interstitial solid solution, where kB is Boltzmann’s constant and T is
the absolute temperature.

ii) Dissipative response:

λ̂ =
1

Mρ
, (25)

where the positive parameter M is the solute mobility.

4 Governing equations

Henceforth we consider the notation for the hollow cylinder as described in the Preliminaries Section,
and we assume that γe = λe = 0. The governing equations for the fields u , µ , ρ and J are
obtained through the combination of the aforementioned basic balances and constitutive theory. We
also consider the previous definitions related with the gradient and divergent of the scalar, vector and
stress fields.

Remark the following relations:

Er =
∂u

∂r
, Eθ =

u

r
, c =

ρ

ρS
, D = M kB T, (26)

where D is the diffusion coeficient.
• The equation for the displacement u is the following:

∂Tr

∂r
+

Tr − Tθ

r
+ be = 0, (27)

where:

Tr = λ̄ (Er + Eθ) + 2µ̄Er − η(3λ̄ + 2µ̄)(c− cr),

Tθ = λ̄ (Er + Eθ) + 2µ̄Eθ − η(3λ̄ + 2µ̄)(c− cr),

Tz = λ̄ (Er + Eθ)− η(3λ̄ + 2µ̄)(c− cr),

(28)

• The equation for the chemical potential µ is the following:

µ = kBT ln c− η (Tr + Tθ + Tz)
ρS

(29)

• the equation for the solute flux J is the following:

J = −D
∂ρ

∂r
+

D η

kBTρS
ρ

∂

∂r
(Tr + Tθ + Tz) (30)

• the equation for the solute density ρ is the following:
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ρ̇ = −∂J

∂r
− J

r
+ h, (31)

with J given by (30).
Observe that, from (29), the chemical potential depends on the solute density and the hydrostatic

stress. From (30), we can observe a generalization of Ficks Law, since the solute flux may be driven by
the solute density and stress gradients. The prescription of µ implies the prescription of ρ , and vice
versa. As pointed out by [4] and [5], when chemical equilibrium prevails at the boundary a constant
value for the chemical potential must be prescribed. This does not mean a constant value for ρ , since
by (29) the chemical potential may involve not only ρ but also stress and elastic strain.

With the above assumptions, the linear elasticity coupled with the diffusion problem can be stated
as follows:

Problem:

Given: Boundary/initial conditions, material and geometrical parameters, body force density, external
solute supply and reference concentration,

Find: The displacement u and the solute density ρ , satisfying the following equations:8><>: ∂Tr

∂r
+

Tr − Tθ

r
+ be = 0,

ρ̇ +
∂J

∂r
+

J

r
= h,

(32)

where:

Tr = λ̄ (Er + Eθ) + 2µ̄Er − η(3λ̄ + 2µ̄)
�

ρ

ρS
− cr

�
,

Tθ = λ̄ (Er + Eθ) + 2µ̄Eθ − η(3λ̄ + 2µ̄)
�

ρ

ρS
− cr

�
,

J = −D
∂ρ

∂r
+

D η

kBTρS
ρ

∂(Tr + Tθ + Tz)
∂r

.

(33)

The equation for the stress components (33)1,2,3 show that stress-assisted diffusion favors solute
migration from lower to higher stressed locations. The relation (33)3 shows that diffusion is driven
by the solute concentration and hydrostatic stress, then the solute flows from a region of higher to a
region of lower concentration. The opposite effect occurs with respect to hydrostatic stress.

Based on the above equations (32), the treatment of boundary conditions at ends r = Ri and
r = Re would be the following: for the equation (32)1, the boundary condition involves the prescription
of the displacement or traction, and the boundary condition associated to the equation (32)2 involves
the prescription of either ρ or J . Actually, in this article, the bondary contitions related with the
force balance equation (32)1 are standard. Therefore, for the solute density equation (32)2 we have
considered the chemical potential µ constant at both surfaces. However, because the chemical potential
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depends explicitly on the trace of stress (see equation (29)), that envolves its dependency on the solute
concentration field, the boundary condition for this equation is time dependent.

5 Weak form

Now we briefly describe the steps involved in the construction of the numerical model, which is based
on the finite element method, backward Euler scheme and an operator-split algorithm.

The governing equations (32) in their weak forms, are:

Given: Boundary/initial conditions, material and geometrical parameters, body force density and
reference concentration,

Find: u and ρ satisfying the following equations:Z Re

Ri

�
Tr

dv

dr
+ Tθ

v

r
− bev

�
r dr + pi Ri − pe Re = 0 ∀ v ∈ V 0,Z Re

Ri

�
J
dϕ

dr
− ρ̇ϕ + hϕ

�
r dr + J(Ri)Ri − J(Re)Re = 0 ∀ ϕ ∈ V 0,

(34)

where:

V 0 is the appropriate functional space,

pi and pe are the internal and external pressure,

Tr = λ̄ (Er + Eθ) + 2µ̄Er − η(3λ̄ + 2µ̄)
�

ρ

ρS
− cr

�
,

Tθ = λ̄ (Er + Eθ) + 2µ̄Eθ − η(3λ̄ + 2µ̄)
�

ρ

ρS
− cr

�
,

J = −D
∂ρ

∂r
+

D η

kBTρS
ρ

∂(Tr + Tθ + Tz)
∂r

.

(35)

The solution and test spaces (functional spaces) are approximated by finite dimensional spaces by
using the finite element method. The approximated fields are denoted by uh, ρh, vh and ϕh.Z Re

Ri

�
(Tr)h

dvh

dr
+ (Tθ)h

vh

r
− (be)h vh

�
r dr + (pi)Ri − (pe)Re = 0,Z Re

Ri

�
Jh

dϕh

dr
− ρ̇h ϕh + hh ϕh

�
r dr + J(Ri)Ri − J(Re)Re = 0.

(36)

Or, in a simplified notation, we have the following semi-discrete systems of equations that represent
the system in (36):
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Fu(u, ρ) = 0

Fρ(u, ρ, ρ̇, ) = 0
(37)

where u and ρ are vectors containing the unknown nodal values for uh and ρh . The functions Fu

and Fρ , viewed as vector valued, have the same dimensions of u and ρ , respectively. The temporal
discretization of this set of equations is carried out by using the Euler implicit method. This results
in the following set of equations for each time instant tk:

Fu(uk, ρk) = 0,

Fρ(uk, ρk, ρ̇k) = 0,
(38)

where, for a time dependent function f , fk and ḟk, which is given by:

ḟk =
fk − fk−1

tk − tk−1
, (39)

are approximations to f(tk) and ḟ(tk), respectively.
The computational problem is to determine uk and ρk given ρk−1. This is solved by using a

staggered scheme comprising the following steps:

i) assume ρk−1 as trial solutions for ρk;

ii) obtain the trial solution for uk by solving (38)1;

iii) update the trial solution for ρk by solving (38)2;

iv) if convergence is attained, update uk and ρk using their trials, otherwise, go to Step (ii) repeating
the next steps.

Each subproblem is solved for its primitive variable while holding that of the other subproblems
equal to their current trials. In the Step (iii), the mechanical stress is obtained from the displacement
and concentration through a direct computation followed by nodal averaging.

6 Numerical example

In this section solutions to the initial boundary value problem of transient hydrogen diffusion coupled
with elasticity are presented in a hollow cylinder, with inner radius Ri = 150 mm and outer radius
Re = 190 mm. Plane strain was assumed and the system’s temperature was 300 K. The material used
in the simulations was high strenght steel and the properties are listed in Table 1 see [18]).

The units used are: the solid density ρS is measured in host lattice atoms (Fe) per volume, i.e.,
(Fe/m3), and the hydrogen density ρ is measured in hydrogen atoms (H) per volume, i.e., (H/m3).
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The solute concentration c = ρ
ρS

, is, then, measured in hydrogen atoms (H) per host lattice atoms
(Fe), i.e., H/Fe.

We assumed that the cylinder is under a prescribed constant pressure on the internal and external
surface: pi = 100.0MPa, pe = 50.0MPa , respectively. As well as, the boundary condition for the
solute density equation is the constant chemical potential µ = −2.0x10−20 Joule/H on both surfaces.
These conditions were adopted in order to mimic the situation described in [11].

Table 1: Material properties of high strenght steel with internal hydrogen.

λ̄ 119.0 GPa

µ̄ 79.0 GPa

D 1.0x10−8 m2/s

ρS 8.454x1028 Fe/m3

kB T 4.14x10−21 Joule/H

η 0.0937 Fe/H

The displacement field with different times are plotted in Figure 1. The blue line corresponds to
initial instant, when the diffusion process had not started, and the cylinder is only under internal and
external pressure, and the black line corresponds to the final instant of the simulation.

 
Figure 1: The displacement field
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The solute concentration distribution with different times are plotted in Figure 2. Initially no solute
atom is in the solid, that corresponds to blue line. The solute diffuses from both outer and inner
surfaces into the middle of the cylinder, and then the concentration increases with an increase in time.

 Figure 2: The solute distribution

As shown in Figure 3 the radial stress component is compressive in all instants and everywhere, the
curves do not differ significantly and have the maximum value at inner surface whereas the internal
pressure is higher than the external pressure.

The circumferential stress component, shown in Figure 4, is tensile everywhere. It is interesting to
observe that at the beginning of the process the curves are close the blue one, that represents to initial
instant.

Almost the same situation we find in the distribution of the axial stress component, shown in Figure
5, at the beginning of the process the curves are close to the initial instant, and all curves are almost
symmetric with respect to the middle of cylinder. This component is compressive in the region near
both surfaces and tensile in the middle region of cylinder. The distribution of the trace of the stress
is quite similar, but all curves and everywhere the trace corresponds to tensile stress, shown in Figure
6.
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Figure 3: The radial stress component profiles

 
Figure 4: The circumferential stress component profiles
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Figure 5: The axial stress component profiles

 
Figure 6: The trace of stress profiles
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