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Abstract

In order to avoid the loss of well-posedness in the post-localization range, some continuum damage theories
introduce higher order gradients of the damage variable in the constitutive model. This paper discuss the
possibility of structural failure prediction of quasi-brittle materials through a special kind of gradient-enhanced
damage theory in which the material is considered to possess a substructure or microstructure. In these theories
the microscopic movements are accounted for by the damage variable and a reformulation of the kinematics
(to include the possible “micromotions”) and of some basic governing principles of the classical Continuum
Mechanics is necessary. The theory allows an adequate description of the strain-softening and localization
behavior due to the material degradation. Within this framework, a numerically predicted macro-crack is the
set of points in the structure where the damage variable has reached its critical value. A simple numerical
technique, based on the finite element method, is proposed to approximate the solution of the resulting
nonlinear problems. The main features of such kind of approach are discussed through examples concerning
macro-crack initiation and propagation in plates under different loading conditions.

Keywords: Damage Mechanics, Finite Elements, quasi-brittle materials, crack initiation, crack propagation.

1 Introduction

Continuum Damage Mechanics uses a phenomenological approach to model the effect of microscopic
geometric discontinuities induced by the deformation process (micro-cracks, micro-voids, etc.) on the
macroscopic behavior of a structure. In continuum damage theories, an internal variable related to
the growth and coalescence of micro defects before the macroscopic crack initiation (whose definition
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and physical interpretation may vary from one model to the other) is introduced and the problem
becomes to establish the constitutive relations for the damage variable as a function of the other state
variables.

In the last few years, many different continuum damage theories for quasi-brittle materials have been
proposed. Since the damage propagation generally leads to a local softening behaviour, the models
based on a local approach, see Kachanov (1986) and Lemaitre and Chaboche [1], may lead to a phys-
ically unrealistic description of strain localization phenomena. In general, due to the loss of ellipticity
of the governing equations in the post-localization range, the resulting mathematical problems may
present an infinity number of solutions with discontinuous fields of displacement gradients what leads
to numerical difficulties of mesh-dependence [2–5]. Some alternative approaches to the local damage
theories have been proposed in the last years, see Saouridis and Mazars (1988); Bazant and Cedolin
[6]; Costa-Mattos et al [7]; Frémond and Nedjar [8], Oller et al (2005), Khoei and Karimi [9], Peyrot
et al [10], for example. Other approaches to the simulation of strain localization and fracture such as
Ruter and Stein (2005), Carpinteri and Brighenti (2008), Brighenti [11], Lorentz [12] can be found in
recent literature.

The present paper deals with an alternative theory in which the continuum is supposed to possess
a substructure or microstructure. Since damage results from microscopic movements, it is proposed
a reformulation of the kinematics and of some basic governing principles of the classical Continuum
Mechanics in order to account for such “micro-movements”. The constitutive equations are developed
within a thermodynamic framework. The basic assumption is that the free energy is supposed to
depend not only on the strain and the damage variable but on the damage gradient as well. Besides,
to account for microscopic effects, the power of the internal forces depends not only on the velocity
and its gradient, but also on the damage velocity and its gradient. The main goal is to present a
numerical technique as simple as possible for approximating the resulting nonlinear mathematical
problems. A splitting technique allows studying the coupled nonlinear problem through a sequence of
simpler linear problems. This technique requires, at each time step, the solution of two problems: one
similar to an equilibrium problem in linear elasticity and the other similar to a heat transfer problem
in a rigid body.

The possibilities and main features of such kind of approach are discussed through examples con-
cerning “crack” initiation and propagation in plates with brittle-elastic behavior under different loading
conditions. The theory allows an adequate description of the strain-softening and localization behav-
iors due to the material degradation. The additional balance equation that governs the evolution of
the damage variable prevents the occurrence of discontinuous damage gradients and, consequently, the
occurrence of discontinuous displacement gradients. This fact allows an adequate simulation of severe
local deformations without the numerical difficulties of mesh-dependence that arise in local continuum
damage models.

2 Modeling

A body is defined as a set of material points B which occupies a region Ω of the Euclidean space
at the reference configuration. In this theory, besides the classical variables that characterize the
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kinematics of a continuum medium (displacements and velocities of material points), an additional
scalar variable β ∈ [0, 1], is introduced. A point, in such continuum theory, is representative of a given
“volume element” of the real material and it is endowed with a microstructure that accounts for the
kinetic energy and internal power of the microscopic motions associated to the microscopic geometric
discontinuities (density of micro-cracks or cavities). This variable is related with the microscopic
motions or links between material points and can be interpreted as a measure of the damage state
of the “volume element”. If β = 1, all the links are preserved and the initial material properties are
preserved. If β = 0, a local rupture is considered since all the links between material points have been
broken. Since the degradation is an irreversible phenomenon, the rate β̇ must be negative or equal to
zero.

In the next sections the basic principles that govern the evolution of this kind of continuum are
summarized. A more detailed presentation of these basic principles can be found in Costa-Mattos and
Sampaio [13]. For the sake of simplicity, the hypothesis of quasi-static and isothermal processes is
adopted throughout this paper. Besides, it is also assumed the hypothesis of small deformation and,
consequently, the conservation of mass principle is automatically satisfied.

2.1 Principle of virtual power

In this work an arbitrary part P of the body B that occupies a region Ω ⊂ R3 at the reference
configuration is taken as a mechanical system. By definition, the boundary of the region Ω will be
called Γ. It is considered with respect to P the space Vu of all fields û of possible velocities and
the space Vβ of all fields β̂ of possible rates of the damage variable. Vu is called the space of virtual
velocities and Vβ the space of virtual damage rates.

The power of the external forcesPext(P, û , β̂), for a given virtual field of velocity û ∈ Vu and for a
given virtual field β̂ ∈ Vβ is defined as:

Pext(P, û , β̂) = Pu
ext(P, û) + PD

ext(P, β̂) (1)

Pu
ext(P, û) =

Z
Ω
(b · û)dV +

Z
Γ
(g · û)dA; P β

ext(P, β̂) =
Z

Ω
(pβ̂)dV +

Z
Γ
(qβ̂)dA (2)

where (b, g) are called the external forces and (p, q) the external microscopic forces. The external forces
are of two kinds: contact forces g applied on the boundary Γ and volume (or body) forces b applied
on Ω. Similarly, the microscopic forces are of two kinds: contact microscopic forces q applied on Γ and
microscopic volume forces p applied on Ω. The power of the microscopic forces must be introduced in
the theory in order to take into account the non mechanical actions that affect the cohesion state of
the material even if there is no mechanical deformation.

In Continuum Mechanics it is usual to consider a first order gradient theory in which the power of
the internal forces is supposed to be a function of the velocity and its gradient. In this theory, similarly
as in Costa-Mattos and Sampaio [13] and Frémond, and Nedjar [8], the power of the internal forces
is also supposed to be a function of β and ∇β. On the assumption that, for a fixed instant t, the
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power of the internal forces can be expressed as a linear functional on Vu × Vβ , it may be shown that
Pint(P, û , β̂) must have the following form:

Pint(P, û , β̂) = Pu
int(P, û) + P β

int(P, β̂) (3)

Pu
int(P, û) = −

Z
Ω
(σ ·∇û)dV ;P β

int(P, β̂) = −
Z

Ω
(H.∇β̂ + Mβ̂)dV (4)

with σ, H , M being the internal forces. σ is a second order tensor, H a vector and M a scalar. σ is
the classical stress tensor and (H ,M) are internal microscopic forces. Similar additional internal forces
also arise in classical microstructure theories such as Mindlin [14], Toupin [15], Goodman and Cowin
(1972). Using the previous definitions, and assuming the hypothesis of slow deformations (hence,
neglecting inertial effects) the principle of virtual power may be stated as follows:

“A given part P of B that occupies region Ω of the space at the reference configuration, is at equilibrium if
the stress tensorσ, the internal microscopic forces (H ,M ), the external forces (b, g), the microscopic external
forces (p, q) are such that

P1 - Pint(P, û , β̂) + Pext(P, û , β̂) = 0 ∀ û ∈ Vu, ∀ β̂ ∈ Vβ , henceR
Ω [σ.(∇û)− b.û ] dV − RΓ2

[g .û ] dA +
R
Ω[H ·∇β̂ + F β̂ − pβ̂]dV − RΓ �qβ̂� dA = 0

∀ û ∈ Vu, ∀ β̂ ∈ Vβ

(5)

P2 - Pint(P, û , β̂) = 0 for a rigid body motion ( i.e. when û(x ) = A(x − xo) + co and β̂(x ) = 0, with
x ∈ Ω, A being an antisymmetrical tensor and co the velocity of a reference point xo ∈ Ω).”

Under suitable regularity assumption, it can be proved that P1 implies the following local expres-
sions:

div σ + b = 0 in Ω, σ.n = f in Γ ; div H−M + p = 0 in Ω, H.n = q in Γ (6)

where n is the unit outward normal to the surface Γ. It can also be proved that P2 implies the
symmetry of the stress tensor.

2.2 Constitutive equations

Under the hypothesis of small deformations and isothermal processes, the free energy of a quasi-brittle
material is supposed to be a function of the deformation ε, the damage variable β and its gradient ∇β.
In order to resume the presentation, the thermodynamic framework used to obtain the constitutive
equations is not presented in this paper. The final relations are the following:

σ= (
βE

1 + ν
)
�

ν

1− 2ν
tr(ε)1 + ε

�
= β [λ tr(ε)1 + 2µε] (7)

F =
�
1
2
λ tr(ε)2 + µ ε.ε

�
− w + λβ + Cβ̇ + λβ̇ (8)
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H = k(∇β) (9)

Where E is the Young modulus, ν is the Poisson’s ratio, λ and µ are the Lamé constants. The terms
λβ and λβ̇ are Lagrange multipliers associated, respectively, to the constraints β ≥ 0 and β̇ ≤ 0 , they
are such that: λβ ≤ 0, β λβ = 0 and λβ̇ ≤ 0, β̇ λβ̇ = 0.

2.3 Mechanical problem

Neglecting the external microscopic forces p and q, the following integral formulation for the quasi-
static evolution problem can be obtained introducing constitutive equations (7) - (9) in (5)

“Let a body B that occupies a region Ω ⊂ R3 with a sufficiently regular boundary Γ be subjected at each time
instant t to external forces – a contact force g : Γ2 ⊂ Γ → R3, and a body force b(t) : Ω → R3 – and
to prescribed displacements ū(t) and damage fields β̄(t) in Γ1 ⊂ Γ, where Γ = Γ1 ∪ Γ2 and Γ1 ∩ Γ2 = ∅.
Find the displacement field u(t) : Ω → R3 with u(t)|Γ1 = ū(t) and the field β(x, t) : Ω → R with
β(t)|Γ1 = β̄(t), such that, for all time instant t ∈ [0, τ ]

aε(u , û , β)− lε(û) = 0

aβ(β, β̂) + lβ(u, β̂) + cβ(β̇, β̂)+Λβ(β, β̂) + Λβ̇(β̇, β̂) = 0
∀ û ∈ Vu, ∀ β̂ ∈ Vβ (10)

with the initial condition β(t = 0) = 1 and subjected to the constraints: β̇ ≤ 0, β ≥ 0”

aε, lε, aβ , lβ and cβ are defined as follows:

aε(u , û , β) =
Z

Ω
β[λ divu divû + 2µ ∇u.∇û]dV (11)

lε(û) =
Z

Ω
[b.û ] dV +

Z
Γ2

[g .û ] dA (12)

aβ(β, β̂) =
Z

Ω

�
k∇β.∇β̂

�
dV (13)

lβ(β̂,u) =
Z

Ω
β̂ [

1
2
λ (divu)2 + µ ∇u.∇u− w + λβ + λβ̇ ]dV (14)

cβ(β̂, β̇) =
Z

Ω

�
Cβ̇β̂

�
dV (15)

Λβ(β̂, β) =
Z

Ω

�
λβ β̂

�
dV ; λβ ≤ 0, βλβ = 0 (16)

Λβ̇(β̂, β̇) =
Z

Ω

�
λβ̇ β̂

�
dV ; λβ̇ ≤ 0, β̇λβ̇ = 0 (17)
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3 Numerical approximation of the integral problem

The abstract mathematical problem (10) is similar to the one that arises in the study of heat transfer in
elastic bodies undergoing small transformations. Hence, numerical strategies adopted for the solution
of coupled heat transfer problems can be easily adapted to this case [16, 17]. This coupled nonlinear
problem can be solved through a strategy in which the semi-discrete problem that results from a
spatial discretization is splitted in a sequence of two linear systems of ordinary differential equations,
which are in turn solved by standard time integration techniques. Such a staggered scheme can be
viewed as a product formula algorithm, exactly as in the classical method of fractional steps [18, 19].

3.1 Semi-discrete problem

The solution of the damage evolution problem is based on a spatial discretization leading to a semi-
discrete version (a nonlinear system of ordinary differential equations). This system of differential
equations is approximated through a sequence of two linear problems, which are in turn solved by
standard time integration techniques. Let’s consider V m

u a m-dimensional sub-space of the space Vu,
generated by a finite set of base functions N i(1 = 1, . . . ,m) and V m

β a n-dimensional subspace of the
space Vβ , generated by a finite set of base functions ϕi(1 = 1, . . . , n). These base functions allow the
construction the approximations um and βn for u and β:

um(x, t) =
mX

i=1

(wi(t)N i(x)) + ū(t) and βn(x, t) =
nX

i=1

(ζi(t)ϕi(x)) + β̄(t) (18)

Where ū(t) and β̄(t) are given functions satisfying the boundary conditions imposed in Γ1. The
spaces V m

u and V n
β may have different dimension (m 6= n). Nevertheless, to simplify the presentation,

from now on, both spaces are supposed to have the same dimension (m = n). The semi-discrete
problem is obtained by replacing u by um and β by βm in the governing equations presented in (10).
It can be verified that the resulting semi-discrete problem is a nonlinear system of first order ordinary
differential equation with the following form:

[K(β)]U = R; [C] β̇ + [A] β + [F(U)] +
�
Υβ(β̇)

�
+
�
Υβ̇(β̇)

�
= 0 (19)

where

U = {w1, w2, ..., wm} ; β = {ζ1, ζ2, ..., ζm} ; β̇ =
¦
ζ̇1, ζ̇2, ..., ζ̇m

©
[K(β)]ij = aε(Ni,Nj ,βm) ; [C]ij = cβ(ϕi, ϕj) ; [A]ij = aβ(ϕi, ϕj)

[R]i = lε(Ni) ; [F (U )]i = lβ(ϕi,um)�
Υβ(β̇)

�
i
= Λβ(ϕi, βm) ;

�
Υβ̇(β̇)

�
i
= Λβ̇(ϕi, β̇m), i, j = 1, ..., m

9>>>=>>>; (20)

If the base function are chosen following the classical Finite Element technique, the parameters
wi (i=1,. . . ,m) at a given instant t can be associated to the components of the displacement u at
the nodal points and the parameters ζi (i=1,. . . ,m) to the value of the auxiliary variable β at the
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nodal points. From now on, it is supposed that the Finite Element technique is adopted and that
the parameters wi and ζi can have such physical interpretation. Nevertheless, the notation will be
kept intentionally general and abstract, since any adequate choice of base functions (such as in the
element-free Galerkin method [20]) can also be adopted alternatively in the semi-discretization.

3.2 Operator splitting technique applied to semi-discrete problem

A splitting Technique is used to approximate the nonlinear semi-discrete problem through a sequence of
simpler linear problems. In the following, it is considered a time step ∆t and the notation: tn = (n ∆t)
and y(tn) = yn. If all the fields are known at a given instant tn, the nodal variables βn+1 and Un+1

can be approximated by solving the following sequence of linear problems
i) βn+1 is the solution of

[C]
¦
θβn+1 + (1− θ)βn

©
+ ∆t [A]

¦
θβn+1 + (1− θ)βn

©
+ ∆t [F(Un)] = 0

ii) Projection 1: if βn+1
i ≥ βn

i → βn+1
i = βn

i ; i = 1, . . . ,m

iii) Projection 2: if βn+1
i < δ ⇒ βn+1

i = βn
i

iv) Un+1 is the solution of
�
K(βn+1)

�
U n+1 = Rn+1

Projection technique adopted in step (ii) aims to assure that the constraint β̇ ≤ 0 is verified in
all nodal points. Projection technique adopted in step (iii) assures that β ≥ 0 in all nodal points.
δ > 0 is the smallest admissible numerical value of the damage variable β. The choice of δ depends on
the precision of the machine, but it is suggested 10−6 ≤ δ ≤ 10−5. θ defines the integration method:
θ = 0, forward Euler; θ = 1, backward Euler and θ = 1/2, trapezoidal rule. A similar procedure to
approximate βn+1 and Un+1 can be considered using a different sequence of linear problems:

i) Un+1 is the solution of [K(βn)]U n+1 = Rn+1

ii) βn+1 is the solution of [C]
¦
θβn+1 + (1− θ)βn

©
+ ∆t [A]

¦
θβn+1 + (1− θ)βn

©
+

+∆t
¦
θ [F(Un)] + (1− θ)

�
F (U n+1)

�©
= 0

iii) Projection 1: if βn+1
i ≥ βn

i → βn+1
i = βn

i ; i = 1, . . . ,m

iv) Projection 2: if βn+1
i < δ ⇒ βn+1

i = βn
i

A reasonable criterion to verify if the approximation of a given problem is adequate is to compare
the different solutions obtained using these two different procedures. Generally they are very close,
even if sufficiently small time interval is considered.

4 Results and discussion

A local governing equation for the damage variable β can be obtained introducing (8), (9) into the
second expression in (6):

Cβ̇ = k ∆β + w −
�
1
2
λ tr(ε)2 + µ ε.ε

�
− λβ − λβ̇ (21)
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Eq. (21) is similar to the heat transfer equation for elastic bodies undergoing small transformations.
Parameter C plays the same role than the specific heat (the smaller is C the bigger is the damage
variation for a given supply of mechanical power). k has a similar role than the thermal conductivity
(the smaller is k, the more localized is the damage). The main difference is the limit defined by
parameter w – at a given material point, β̇ 6= 0 only if

�
1
2λ tr(ε)2 + µ ε.ε

�
> w. Hence, it is necessary

a minimum strain energy w in order to have a local evolution of the damage variable.
As a first step to assess the main features of the modeling, a one-dimensional problem is considered

in the next section. The main goal is to study the influence of the material parameters on the material
behavior through a simple example. The features of the numerical solution strategy are discussed
in three other examples concerning the crack initiation and propagation in plates under different
conditions.

4.1 A non-homogeneous one-dimensional problem

In this first example, it is considered a bar of length L, submitted to the following boundary conditions

ux(x = 0, t) = 0, ux(x = L, t) = αt and β(x = 0, t) = 1, β(x = L, t) = 1,∀t (22)

Neglecting the weight of the bar (b = 0) and assuming it is not submitted to external microscopic
forces (p = q = 0), the local governing equations can be expressed as follows in a one-dimensional
context

∂σxx

∂x
= 0 (23a)

∂ux

∂x
=

σxx

Eβ
(23b)

∂β

∂t
=

8<: − 1
C

D
1

2E

�
σxx

β

�2 − w − k ∂2β
∂x2

E
, if 0 <β ≤ 1

0, if β = 0
(23c)

Defining the dimensionless variables (σ∗, x∗, u∗, t∗) and the dimensionless quantities (C1, C2):

σ∗ =
σxx

E
, x∗ =

x

L
u∗ =

ux

L
, t∗ =

E

C
t,C1 =

w

E
,C2 =

k

L2E
(24)

problem (22), (23) can be re-written as follows:

∂σ∗

∂x∗
= 0 (25a)

∂u∗

∂x∗
=

σ∗

β
(25b)

∂β

∂t∗
=

8<: −
D

1
2

�
σ∗
β

�2 − C1 − C2
∂2β

∂(x∗)2

E
, if 0 <β ≤ 1

0, if β = 0
(25c)
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with

u∗(x∗ = 0, t∗) = 0, u∗(x∗ = 1, t∗) = α̂t∗ =
�

αC
EL

�
t∗

β(x∗ = 0, t∗) = 1, β(x∗ = 1, t∗) = 1
∀t (26)

This simple one-dimensional example shows that the model accounts for the size effect through the
parameter C2 (the behavior of the structure will depend on the length L). Although the (dimensionless)
axial stress component σ∗ is constant along the bar, it will undergo a non homogeneous deformation
due to the damage. Fig. 1 shows the distribution of the axial strain component ε = ∂u∗

∂x∗ at instant
t∗ = 3.555×105 for two different values of the parameter C2 considering C1 = 5×10−7 and α̂ = 10−8.
It can be observed that the smaller is C2 (or k), the more localized is the deformation at the middle
of the bar.

 

  

 
 

Figure 1: Distribution of the axial deformation along the bar for two different values of C2.

Fig. 2 shows the influence of the parameter C2 on the (dimensionless) axial stress versus axial strain
curve at the point x∗ = 1/2, taking C1 = 5× 10−7 and α̂ = 10−8. Parameter w (or the dimensionless
parameter C1) is related to the minimum strain energy necessary to start the damage evolution at
a given point. In the one-dimensional case it corresponds to the area of the linear portion of the
stress-strain curve, see Fig 3.

Parameter C (or the dimensionless parameter α̂) has a similar role than the specific heat in a one
dimensional heat transfer problem in an elastic bar. Fig. 4 shows the (dimensionless) axial stress versus
axial strain curve at the point x∗ = 1/2, taking C2 = 2 × 10−7, C1 = 5 × 10−7 and different values
of α̂.
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  Figure 2: Influence of the parameters C2 on the structure behavior.

 

  
 

 
 
 Figure 3: Definition of the parameter C1.

4.2 Square plate with transverse hole submitted to prescribed axial displacement

In order to assess the features of the modeling, it is analyzed a square plate (200 mm x 200 mm)
with a central circular hole with 50 mm radius, submitted to prescribed displacement û(t) = αt, α =
2.5×10−3 mm/s, at the extremities (Fig. 5). The goal is to study the “crack” initiation on such kind of
structure. The material properties are: E=27.0GPa, ν = 0.2, k = 0.2 MPa.mm2, C = 1.0×10−8 MPa.s
and w = 5.0 × 10−8 MPa. The prescribed displacement and the adopted time step are respectively
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Figure 4: Influence of the parameters α̂ on the structure behavior.

given by u(L, t) = αt, (α = 5.0 × 10−3 mm/s). Plane state of strain is assumed and isoparametric
bi-linear quadrilateral finite elements are adopted with time step ∆t = 1.0× 10−4 s.

The evolution of the variable D = (1−β) on the plate is depicted in Fig. 6. Considering a numerically
predicted macro-crack the set of points in the structure where the damage variable has reached a given
critical value, it can be observed a straight “macro-crack” initiation and propagation orthogonally to
the load direction. The region where the material is completely damaged (β = 0 or, equivalently,
D = 1) is not limited to a column of elements as it happens in a mesh dependent problem.

Fig. 7 presents the damage and axial stress fields at instant t = 3.0 s. In this theory, the stress at
the tip of the “crack” is zero (since β = 0) and the higher stress concentration (but with a finite value)
occurs a little ahead of the “crack” tip.

Fig. 8 shows the distribution of the longitudinal displacement along the plate at three different time
steps. As it can be verified, after instant t=3.35 s, total failure occurs and the “broken” part of the
plate almost undergoes a rigid body motion.

The external tensile force F versus prescribed displacement ĥ curves for the four different meshes in
Fig. 10 are presented in Fig. 9. The softening behavior is almost the same for all the meshes showing
that numerical difficulties of mesh-dependence due to the loss of ellipticity of the governing equations
in the post-localization range are not observed in this case.

Fig. 12 allows to observe the damage propagation along the horizontal lines A (y = 53.0 mm) and B
(y = 60.0 mm), defined in Fig 11. The shapes of the curves and the damage levels at different points
along those lines are almost the same for different meshes.
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 Figure 5: Plate with central circular hole.

 

 
 
 

 
 
 

Figure 6: Plate with central circular hole. Damage distribution at different instants.
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Figure 7: Plate with central circular hole. Damage and axial stress distribution. t = 3.0 s.
 

 

 
 
 
 

Figure 8: Plate with central circular hole. Distribution of the longitudinal displacement along the plate
at three different time steps.

The performance of the proposed algorithm is also checked by comparing the distribution of vari-
able β and longitudinal displacement u obtained using different time steps ∆t and the same spatial
discretization, mesh-2 (Fig. 9). Backward Euler (θ = 1) time integration scheme was employed. The
time increments considered in the simulations are 0.1 s, 0.01 s, 0.001 s, 0.0005 s and 0.0001 s. The
distribution of the variables β and u along the line B, at instant t = 3.0s, is presented in Fig 13.
The curves obtained using time increments ∆t=0.0005s and ∆t=0.0001s are indiscernible within the
precision of the figure.
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Figure 9: Plate with central circular hole. Analysis of mesh dependence - Different meshes considered.

4.3 Double-edge-cracked plate submitted to a prescribed axial displacement

It is considered in this section a double-edge-cracked plate (25 mm x 10 mm), with initial crack length
of 4 mm, loaded with a prescribed displacement û(t) = αt, α = 5.0 × 10−3 mm/s, at both sides
(Fig. 14). In this case, the goal is to perform the analysis of a “crack” propagation. The material
properties are the same than the previous example. Plane state of strain is assumed and isoparametric
bilinear quadrilateral finite elements are used with a time step ∆t = 1.0× 10−4.

Fig. 15 shows the damage field D = (1−β) on the plate at three different time steps. Fig. 16 shows
the longitudinal displacement along the plate. As it can be verified, after instant t=1.577s, total failure
occurs and the “broken” part of the plate undergoes a rigid body motion.
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Figure 10: Plate with central circular hole. Tensile force versus displacement û.

 

 
 

 

 
 Figure 11: Plate with central circular hole. Longitudinal lines A and B.
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 Figure 12: Plate with central circular hole. Damage along lines A and B.

 

 
 
 

 

 
Figure 13: Plate with central circular hole. Distribution of variables β and u along the line along line
B, at t = 3.0s

The external tensile force F versus prescribed displacement û curves for the three different meshes
in Fig. 17 are presented in Fig. 18. Mesh-1 has 340 nodes and 304 elements, mesh-2 has 500 nodes and
456 elements and mesh-5 has 252 nodes and 221 elements. Mesh 3 is deliberately distorted to check
the sensitivity of the numerical solution to the choice of the mesh. The softening behavior is almost
the same for all the meshes showing that numerical difficulties of mesh-dependence are not observed
in this case.

Fig. 19 shows the damage distribution at instant tf when total failure occurs for the 3 different
meshes. The damage distribution is practically the same for all the meshes.
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Figure 14: Double-edge-cracked plate.

 

 
 

 
 

 
 

Figure 15: Double-edge-cracked plate. Damage distribution at instants t = 1.3 sec, t = 1.575 sec and
t =1.577sec.

4.4 Rectangular plate, clamped at the ends and submitted to a prescribed axial displacement

It is considered in this section a rectangular plate (200mm x 100 mm) clamped at the ends and
submitted to a prescribed axial displacement û(t) = αt, α = 1.0x10−2mm/s, at the extremities
(Fig. 20). The material parameters are: E=50.0GPa, ν=0.2, C = 1.0×10−3 MPa.s and w = 2.5×10−2

MPa. In this case, the goal is to perform the analysis of a “crack” initiation and propagation in a
complex mode.

Fig 21 shows the vertical displacement along the plate at the moment total failure occurs, considering
two different values of the parameter k: 1 MPa.mm2 (t=30 s) and 0.5 MPa.mm2 (t = 24 s). Initially a
“macro-crack” appears on the left corner at the bottom of the plate initially propagates orthogonally
to the load direction and then changes the direction of propagation until total failure occurs (with two
regions almost undergoing a rigid body motion). The “macro-crack” can be associated to the zone of
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Figure 16: Double-edge-cracked plate. Longitudinal displacement (mm) at instants t = 1.3 s, t = 1.575
s and t = 1.577s.

 

 
 

 
 
 
 

Figure 17: Double-edge-cracked plate – Different meshes considered.

transition between regions I and II where the material can no longer resist to mechanical solicitations.
If a constant k=0.5 MPa.mm2 is considered instead of k=1 MPa.mm2, the fracture is more localized.

5 Conclusion

In the present paper it is proposed a framework, as simple as possible, to perform structural integrity
analysis of quasi-brittle structures undergoing general loading (degradation due to the deformation
process, crack initiation, crack propagation, total rupture) using a gradient-enhanced continuum dam-
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Figure 18: Double-edge-cracked plate. Tensile force versus displacement û.

 

 
  

 

 
 Figure 19: Double-edge-cracked plate. Damage distribution at the instant tf when total failure occurs.

age model. A simple numerical technique was proposed to approximate the solution of the resulting
nonlinear mathematical problem without the necessity of radical modification of an ordinary finite
element code. The basic idea is to consider a splitting technique that transforms the global nonlinear
problem in a sequence of linear problems that can be approximated using classical The basic idea is
to consider a splitting technique that transforms the global nonlinear problem in a sequence of lin-
ear problems that can be approximated using classical discretization techniques. The Finite Element
technique was adopted to obtain the semi-discrete problem. Nevertheless, the notation was kept inten-
tionally general and abstract, since any adequate choice of base functions (such as in the element-free
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Figure 20: Clamped plate.

 

 
 

 
 
 
 
 

Figure 21: Clamped plate. Longitudinal displacement (mm) for two different values of k.

Galerkin method) can also be adopted alternatively in the semi-discretization. The numerical results
are indiscernible within the precision of the figures if different time integration techniques (different
values of θ) were adopted or different splitting techniques (section 3.2) were applied to the semi-discrete
problem.

The theory allows a correct qualitative description of the strain-softening phenomena, is valid for
any kind of geometry and for any kind of external loading, and can be seen as a first step towards
a reasonably simple and practical tool to model the fracture of quasi-brittle structures(ceramics,
concretes, rocks, glasses, etc.). Within this framework of microstructure theory, more sophisticated
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boundary conditions for the damage variable can be considered to include adherence, for instance,
through the external contact microscopic force.
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