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Abstract

Crack propagation tests are often used to identify adhesion parameters,helping to evaluate the quality of
bonded joints. The critical energy release rate GC is one of the basics parametres that caracterizes a bonded
joint. One can predict the behavior of the bonded plates during a crack propagation test by obtaining the
propagation curves for a given GC value. This paper aims to consider the usefullness of two methods for
obtaing such curves. In a classic analytical approach, the adhesion between the plates is considered perfect.
In such case the interface stiffness is not taken into account, where both plates behave as one when the joint
is undamage and as two separated plates in the cracked zone. The second approach is numerical. The bonded
interface is now consider elastic. The interface stiffiness is also a parametre that caracterize the bonded joint.
With the aide of the finit element code Cast3m, a diferent method is proposed to obtain the propagation
curves. A good quality of fitting was achieved when both analytical and numerical based values are compared.
Finally, some exemples applying numerical method are presented to show the advantage of such approach.
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1 Introduction

In the last years, industrial use of adhesive has been growing over other conventional joining techniques.
This growth can be mainly explained by the low weight among other engineering effectiveness of this
type of structural joint.

Crack propagation tests are normally used to identify the adhesion parameters, helping to evaluate
the quality of bonded joints [1, 2]. In classic tests, a initial crack between two bonded plates propagates
when a flexure load is applied. This tests are classified by the propagation modes defined in the fracture
mechanics theory. In Fig. 1, DCB (Double Cantilever Beam) and ENF (End Notched Flexure) are pure
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mode I and pure mode II tests, respectively. There are also some tests that combine pure propagation
modes, as the MMF (Mixed Mode Flexure).

The critical energy release rate Gc is one of the basics parametres caracterizing a bonded joint.
One can predict the behavior of the bonded plates during a crack propagation test by obtaining the
propagation curves for a given Gc value.

Two diferents methods to obtain this curves are considered here. In an classic analytical approach,
the adhesion between the plates is considered perfect. In such case the interace stiffness is not taken
into account. Both plates behave as one when the joint is undamage and as two separated plates
in the cracked zone. By applying the classic beam theory one can study the behavior of the plates
during the delamination in the framework of the Linear Elastic Fracture Mechanics. This approach
was originally presented by Allix, Ladeveze and Corigliano [3]. They have showed how to calculate the
stability conditions for load and displacement control, wich is very important to identify snap-back
problems.

The second approach is numerical. The bonded interface is now consider elastic. The interface
stiffiness is also a parametre that caracterize the bonded joint. The propagation curves are abtained
with the aide of the finit element code Cast3M, developed by the CEA (Commisariat a l’Energie
Atomique, France), by taking the structural response for a given value of initial crack at a time.

 
Figure 1: Crack propagation tests.

2 Analytical approach

The critical energy release rates Gc can be derived from linear beam theory using the classical Irwin-
Kies expression for the fracture energy [4]:

Gc =
P 2

2B

dC

da
(1)

where P is the load applied to the specimen, B the specimen width and a the crack length.
The compliance C is defined as:
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C =
u

P
(2)

where u is the displacement.
Allix, Ladeveze and Corigliano [3] presents the expressions for the compliance and the propagation

curves for DCB and ENF specimens (Tab. 1). In this table the expressions for a mixed mode test
(MMF) were found following the same methode presented by Allix, Ladeveze and Corigliano [3]. The
expressions were calculated for two beans of length L, width B, thickness H, Young’s modulus E and
moment of inertia of section I.

Table 1: Compliance and propagation curves for pure mode tests

Test a C f(P,u)

DCB 0 ≤ a ≤ L 2a3

3EI u = 1
3P 2

√
EI (BGc)

3/2

ENF 0 ≤ a ≤ L/2 L3+12a3

384EI u = PL
3

384EI + 16
P 2

√
EI
�

BGc

3

�3/2

ENF L/2 ≤ a ≤ L L3+3(L−a)
3

96EI u = PL
3

96EI − 16
P 2

√
EI
�

BGc

3

�3/2

MMF 0 ≤ a ≤ L/2 L3+28a
3

384EI u = PL
3

384EI + 112
3P 2

√
EI
�

BGc

7

�3/2

MMF L/2 ≤ a ≤ L 2L3−7(L−a)
3

96EI u = PL
3

48EI − 112
3P 2

√
EI
�

BGc

7

�3/2

Figure 2 shows the crack propagation curves for a MMF test and the lines that mark the stability
zones for load control (0.5L < a < L) and for displacement control (0.261L < a < L). The curves were
obtained using the following values: Gc = 0.4 N/mm; E = 81000 MPa; L = 120 mm; B = 20 mm and
H = 3 mm.

3 Numerical approach

Flexure tests can also be studied by numerical simulations [5, 6]. The simplest way to simulate a
flexure test is to use a finite elements model with an elastic interface representing the adhesive.
The simulations here were performed in Cast3M software developed by the CEA - (Commisariat a
l’Energie Atomique, France). The elastic interface behavior can be simulated in this software, in which
the elastic stiffness is defined by the constants k(i) (i = 1,2 or 3). The use of a simple elastic interface
does not allow observing the evolution of the crack automatically. It should be necessary to use a
damage interface model to be able to represent a crack propagation through the interface[7]. However,
when sharp snap-back problems are encountered in the structural response it’s necessary to follow
some special procedures to overcome it [8]. In this work we propose to obtain the propagation curves
by using simple elastic interface and by taking the structural response for a given value of initial crack
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Figure 2: Crack propagation curves and stability zones for a MMF test.

at a time. Figure 3 is a scheme representing the crack evolution. The energy G necessary to make a
crack propagate represented by the gray area is calculated by Eq. (3).

 
Figure 3: Crack propagation scheme.
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G =
FLE(i)

2
(FS(i− 1)− FI(i)) (3)

Index i represents the instant observed in relation to the initial crack length a. For instance, FLE(2)
and FS(1) represent the displacement and load at the time the crack advances from 1mm to 2mm,
and FI(2) is the load at the time when energy begins to accumulate again, to make the crack advance
from 2mm to 3mm. The 1mm crack step is used as a reference to simplify analysis, however, from the
numerical standpoint, smaller steps can be used.

With the FE model it is possible to obtain the displacement Y(i) corresponding to a load P0 applied
for a given crack length a. The propagation curve for a given critical energy value Gc is the curve that
contains all the FS(i) points. Based on Fig. 3, the following relations can be written:

F1
Y (i)

=
FS(i)

FLE(i + 1)
=

FI(i)
FLE(i)

= R(i) (4)

Using Eq. (3) one can find all displacements FLE(i) for each value of the rigidity R(i):

FLE(i) =

Ê
2Gc

R(i− 1)−R(i)

A routine was performed in CAST3M to calculate loads FS(i) and FI(i) and the displacements
FLE(i) and Y(i) for a given load P0. Figure 4 shows some examples of curves obtained in an ENF
test for different values of Gc. The curves were obtained using the following values: k(i) = 1017N/m3;
E = 81000 MPa; L = 120 mm; B = 20 mm and H = 3 mm.

 
Figure 4: Crack propagation curves.
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4 Comparison of results

The graph in Fig. 5 compares the numerically obtained curve to those obtained analytically for a
ENF test. The two methods present very close curves, with a small difference when the crack enters
the stability zone for displacement control (a = 41.64mm). This difference is due to the fact that the
analytic method considers that the plates behave like two beams without any contact in the crack
region, while the finite elements model takes the unilateral contact between the plates in the crack
region into account.

 
Figure 5: Analytical and numerical curves for ENF tests.

Figures 6 and 7 confirms the good agreement between the two methods now for mode I and mixed
mode tests.

5 Different test geometries

More than an easier method to obtain propagation curves, the numerical method presented here is an
important tool to selection of optimized adhesion tests geometries. The Tapered Double Cantilever
Beam test (TDCB) is a good example of the difficulties associated with the analytical approach due
to the complexity of its geometry [9]. Qiao, Wang and Davalos [10] have shown that it can be even
more complex in the case of different materials for adherend and contour portions. With the numerical
method presented here, it is possible to obtain the propagation curves for TDCB tests with the same
material or different materials as well. One can also study the influence of the specimen geometry by
changing the FE mash (Fig. 8). Figure 9 shows an example of propagation curves for TDCB tests with
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Figure 6: Analytical and numerical curves for DCB tests.

 
Figure 7: Analytical and numerical curves for MMF tests.

different values of the H1. The curves were obtained using the following values: k(i) = 1017N/m3; E
= 81000 MPa; L1 = 300 mm; L2 = 40 mm; H2 = 15 mm and width B = 20 mm. One can see the
rigidity increasing specially for a crack lenght bigger than L2. Also, the closest H1 is to H2 the closest
the curve is to a DCB test one.
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Figure 8: TDCB FE mash.

 
Figure 9: Crack propagation curves for TDCB tests.

6 Interface stiffness

Damage interface models usually take the interface stiffness redution as a parameter to indicate the
degradation of the interface [11–14]. The problem using this models is to obtain the initial value of
the stiffness. It is impossible to obtain the undamaged interface stiffness from classical mechanical
tests with accuracy. Figure 10 shows the propagations curves for a ENF test by changing the interface
stiffness in the FE model. For the values of k(i) above 104N/m3, one cannot see the difference because
the curves are too close. Usually, the interface stiffness is higher than such value. That is why an
ultrasonic method was proposed to measure it [15].
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Figure 10: Influence of the interface stiffness.

7 Conclusion

The crack propagation in adhesion tests was studied in the framework of linear elastic fracture mechan-
ics by two different and complementary approaches. The first, purely analytical, allows the equations
of propagation curves to be obtained. The second is numerical and allows taking elastic interface
stiffness into account. It was seen that the two approaches generate compatible results. The results
obtained in an initial analysis using the methods presented here, provide an idea of the behavior
of bonded plates before to perform the mechanical tests. The prior knowledge of the stability zones
allows planning the test so that the crack propagation occurs in a stable manner. It can be done by
using a correct value for the initial crack length. The advantage of the numerical method is that it
can supply the propagation curves easier than the analytical. It can also be used for more complex
geometries different from the classical tests. Depending on the specimen used in the test, the analytical
calculation may take a lot of work or even be imprecise when the profiles used are no longer in the
domain of the classical beam theory.
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