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Abstract

This work proposes a material model and algorithms for applications in polymeric foams. The constitutive
relationship is given in association of work-conjugate pair Hencky strain deformation measure and rotated
Kirchhoff stress tensor are proposed and explored. The viscoplastic model applied for polymeric foam is non
associative, based on a modified von Mises model (by inclusion of the hydrostatic pressure) and incorporates
a non linear isotropic hardening law. A regularization approach is proposed to guarantee that the relative
density evolution is into the factible set Kρ. Various examples are presented along this work aiming to atest
the models and implemented algorithms. The problem is formulated within a Total Lagrangian descripton.
The Galerkin finite element method is used for numerical approach. Finally some problem cases are solved,
and the proposed model, the robustness and performance of the algorithms employed are tested.

Keywords: polymeric foam, Kirchhoff stress tensor, Hencky strain tensor, viscoplasticity.

1 Introduction

Polymeric foams are widely used in industry and in domestic applications. These foams have a high
energy absorption capacity, are useful for shock applications, acoustic and thermal insulating prob-
lems. For these reasons, they are used in aircraft and automotive industry, buildings and packaging.
Combining good mechanical properties with low density, rigid polymer foams can also be used as
structural materials.

The polymeric foams are made of a skeleton composed of open or closed cells, which represent the
basic unit of these materials. The mechanical response of polymeric foams depend on the cells geometric
characteristics, such as cell wall thickness, shape and size distributions, and on the intrinsic properties
of the polymer in the cell wall. In order to model such complex materials, different constitutive
relations have been proposed in the literature and are basically divided into two groups: complex
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modeling approaches that proposes constitutive relation which describe the average behavior of the
foam [1–5] or simpler models that try to represent the cells as an assemblage of structural elements
(geometrically periodic cells) [6–9] and relate to analytically elastic material properties and yield stress
to the foam relative density.

In order to properly use these materials, one must understand their microstructure/macroscopic
mechanical property relationships. Indeed, the mechanical response of these materials depends on
their geometrical characteristics, and on the intrinsic properties of the polymer in the cell wall. The
geometrical characteristics are determined by the cell wall thickness, the size distribution and the cells
shape.

In this work we consider a complex modeling approach and propose a hyperelastic-viscoplastic
constitutive relation for modeling the behavior of open cell foam materials. Moreover, based on exper-
imental results, we consider the hyperelastic response to depend on the relative density of the material
[10, 11].

Among the various proposed constitutive relations, one can cite the power-law model, described
in Chaboche and Rousselier [12], that is generally accepted to give good predictions for low strain
rates. However, as the strain rate increases, such a model is unable to describe the observed decreasing
strain rate dependence. Also, in the limit, with the increase of the strain rate, the model should be
capable to account for a saturation of the material response, as observed experimentally. With the
aim of incorporating this material behavior in a unified viscoplastic model, other propositions for the
flow rule have been used in the literature. Examples include a hyperbolic sine function, see [13], an
exponential function or the addition of a second power-law function to the flow law, as proposed by
Chaboche [14]. Some models even combine plasticity with viscoplasticity in order to achieve these
goals, as seen in Almroth et al [15]. Here, we make use of the constitutive equation proposed by
Benallal, see [16], which can be applied for large strain rates and account for the saturation of the
overstress where the strain rate is very high.

The proposed model is implemented in a Total Lagrangian framework that considers: a multiplicative
decomposition of the deformation gradient, into a plastic and an elastic part and a constitutive relation
given in terms of the logarithmic, or Hencky, strain measure and the rotated Kirchhoff stress. The
advantage of choosing this conjugate stress-strain pair in the formulation of the constitutive relation is
that it leads to a return mapping whose form is the same as the one derived in the small deformation
plasticity framework. In addition, one consider the temperature to be low and the deformation rate
to be sufficiently high in order to consider the existence of an elastic response and a yield function.

2 Theoretical approach

This paper proposes an elastoviscoplastic constitutive relation for the finite deformation of isotropic
crushable polymeric foams, which incorporates the phenomena of creep, relaxation and deformation
rate sensitivity in the response of the material.

The model considers the material to have a hardening behavior that is characterized by two curves:
one for the compaction response and one for the uniaxial compressive test, which must be determined
experimentally. In addition, as a result of experimental observation, the model incorporates a different
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response in compression and tension and assumes the hyperelastic behavior to depend on the relative
density of the material. In compression the ability of the material to deform volumetrically is enhanced
by cell wall buckling processes as described by Gibson & Ashby [6] and Girson et al. [7].

It is assumed that the foam cell deformation is not recoverable instantaneously and can be seen
as being viscoplastic. Under tension loading, the cell walls break readily so the tensile load bearing
capacity of crushable foams may be considerably smaller than its compressive load bearing capacity.

3 Kinetics of deformation

The plasticity model presented in this paper considers the multiplicative decomposition of the defor-
mation gradient F into an elastic part, F e, and a viscoplastic part, F vp, as illustrated in Fig. 1.
Thus,

F = F eF vp (1)

with F = ∇φ(xo, t), where φ is the deformation function.

 
Figure 1: Kinematics of deformation.

However, since F e = ReUe, F vp = RvpUvp, Ue =
√

Ce =
p

F eT F e, Le = Ḟ e(F e)−1, Lvp =
F eḞ vp(F vp)−1(F e)−1 and D = sym(L) = De + Dvp, the deformation measure, given in terms of the
logarithmic strain tensor, may be expressed as

Ee(xo, t) =
1
2

ln (Ce(xo, t)) ;

= ln (Ue(xo, t)) .

(2)
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Hill [17] pointed out that the stress-strain pairs must be such that the rate of work density remains
preserved. The enforcement of this criterion together with the assumption of an isotropic response of
the material leads to the identification of the conjugate stress measure, which is given by the rotated
Kirchhoff stress,

τ̄ = RT τ R (3)

where τ is the Kirchhoff stress, τ = det(F ) σ, with σ denoting the Cauchy stress [18, 19].

4 The Yield surface definition

To define the yield function, we introduce the following basic definitions:
• The deviatoric rotated Kirchhoff stress, given by:

τ̄D = τ̄ − 1
3
tr(τ̄) I (4)

• The von Mises effective rotated Kirchhoff stress, given by

q =

r
3
2
τ̄D : τ̄D (5)

• The hydrostatic pressure stress, given by

p = −1
3
tr(τ̄D) (6)

Thus, from Eq. (4) and Eq.(6) we may express the rotated Kirchhoff stress as τ̄ = τ̄D − p I. Here,
we consider the yield function for crushable foam materials, shown in Fig. 3, to be defined in terms
of the Kirchhoff stress measure and given by

=̃(p, q, ε̄k) =
È

q2 + [α(ε̄k)]2[p− po(ε̄k)]2 −B(ε̄k) (7)

in which α = α(ε̄k) and po = po(ε̄k) are functions of the internal variables ε̄k. The parameters o po

and B of the yield ellipse are related to the yield strength in hydrostatic compression, pc, and to the
yield strength in hydrostatic tension, pt, by

po =
1
2
(pc − pt), B = αA = α

pt + pc

2
(8)

where pc and pt are positive numbers and A is the length of the (horizontal) p-axis of the yield ellipse
(see Fig. 2 and Fig. 3).

The evolution of the yield ellipse is controlled by the volumetric compacting viscoplastic strain,

ε̄1 = ε̄vp
v = − ln(Jvp), Jvp = det(F vp) (9)

employed in the volumetric hardening model, and by the axial viscoplastic strain,
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ε̄2 = ε̄vp
a = − ln

�
Lf

Lo

�
(10)

defined in a unilateral compression test, in which Lf is the unloaded length of the specimen, after
the deformation has been applied, and Lo is the length of the initial configuration of the reference
specimen. To define the hardening behavior, some experimental test data must be obtained, which
comprise:

• A uniaxial compression test data
• A hydrostatic compression test data

These hardening curves must be experimentally evaluated and incorporated to the model. Here,
we assume the hydrostatic tension strength, pt , to be proportional to the hydrostatic compression
strength, i.e.,

pt = αppc (11)

for some constant value αp ∈ [5%, 10%], see Hanssen et al [20] and Hallquist [1]. In addition, we assume
the hydrostatic compression strength, pc , to evolve as a result of compaction (increase in density) or
dilation (reduction in density) of the material, i.e.

pc = po
c + Hp(ε̄vp

v ) (12)

where po
c is the initial hydrostatic compression yield strength and Hp(ε̄vp

v ) is the hydrostatic compres-
sion strength hardening law, given in terms of the volumetric compacting viscoplastic strain.

 
Figure 2: Yield surface.

In order to compute α(ε̄vp
v ; ε̄vp

a ) different independent experimental test is required. Here, we employ
a uniaxial compression tests. Notice that, different tests could also have been considered. Now, since
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the type of impact loading that we want to simulate is dominated by a uniaxial compression type of
loading, the best result for the analysis may be probably obtained by using a uniaxial compression
test. From a uniaxial compression test we obtain

σ̄c(ε̄vp
a ) = σ̄o

c + H(ε̄vp
a ) (13)

where σ̄o
c is the initial yield stress, H(ε̄vp

a ) is the strain hardening function and ε̄vp
a is the equivalent

viscoplastic strain. Now in a general 3D case, the axial viscoplastic strain is not well defined. However,
the uniaxial test response may be incorporated indirectly by using the uniaxial relation

ε̄vp
a =

ε̄vp
c

(1− 2νp)
(14)

Now, using (Eq.11-14), we can compute α(ε̄vp
v ; ε̄vp

a ), as follows

α(ε̄vp
v ; ε̄vp

a ) =
σ̄c�

pcpt − 1
3 σ̄c (pc − pt)− 1

9 σ̄2
c

� 1
2

(15)

 
Figure 3: Volumetric hardening.

5 The non-associative viscoplastic flow potential

The viscoplastic strain rate for the volumetric hardening model is assumed to be given by

D̄vp = λ̇
∂G

∂τ̄
(16)

complemented by postulating a null viscoplastic spin, compatible with viscoplastic isotropy, i.e., W̄ vp =
0 (null second order tensor). Here, λ̇ is the viscoplastic multiplier which must satisfy: λ̇ > 0, which is
given by a constitutive relation. The evolution of the viscoplastic deformation is computed as
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Ḟ vp =
^

D
vp

F vp (17)

where
^

L
vp

= (F e)−1
LvpF e (unstressed local configuration) and

^

W
vp

= (Ue)−1
W vpUe = 0 (null

second order tensor). The viscoplastic flow potential (see Fig. 3) for this model is given by

G(p, q) =
È

q2 + β2p2 (18)

in which β is related to the plastic Poisson’s ratio νp by

β =
3√
2

Ê
1− 2νp

1 + νp
(19)

The usual assumption, for polymeric foams is to consider p ν = 0.0. In the absence of the knowl-
edge of the plastic Poisson’s ratio, the consideration of a zero plastic Poisson’s ratio is a reasonable
assumption, as shown in Zhang et al [4], Gibson & Ashby [6] and Gilchrist & Mills [21].

6 Evolution law for the accumulated viscoplastic strain

In the case of viscoplastic materials, the viscoplastic multiplier λ is computed by solving a constitutive
evolution equation. Here, we make use Benallal’s model, see Lemaitre [16] for more details, given by

˙̄evp = ln

"�
1− =̃(p, q, ε̄k)

Kv

�−M#
(20)

where

˙̄evp =
�
2
3
�
D̄vp : D̄vp�� 1

2

(21)

Notice that, the evolution of the accumulated viscoplastic strain, which enables the determination of
the viscoplastic multiplier, is based on a model that accounts for a saturation of the material response
to the increase of the applied rate of deformation. In fact, we have that

=̃(p, q, ε̄k) = σv > 0 (22)

where we denote σ v as the over stress measure, we obtain

σv = Kv

�
1− exp

� ˙̄e
M

�−M�
(23)
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7 Hyperelastic response

Here, we consider the elastic response to be given, in terms of the logarithmic or Hencky strain tensor
and therotated Kirchhoff stress, as

τ̄ = 2µ(ρ∗)Ee +
�
κ(ρ∗)− 2

3
µ(ρ∗)

�
tr(Ee) I (24)

where

µ(ρ∗) =
E(ρ∗)

2 (1 + νo)
;

κ(ρ∗) =
E(ρ∗)

3 (1− 2νo)
,

(25)

In which E(ρ∗), is the Young modulus, I is the second order identity, tensor, κ(ρ∗) is the bulk
modulus, µ(ρ∗) is the Lamé’s coefficient or the shear modulus and ρ∗ denoting the relative density,
which is defined by the ratio of the foam density, ρ , with the fully compact material density, ρM ,
i.e.,

ρ∗ =
ρ

ρM
(26)

The continuity equation may be written in terms of the relative density as

ρ∗o = det(F )ρ∗ (27)

in which ρ∗o = ρ∗o(xo) denotes the initial relative density, defined in the reference configuration, and
ρ∗ = ρ∗(xo, t) the actual relative density, defined at the reference configuration. Here, it’s important to
notice that the set of physical allowable relative densities, related to physical admissible deformation
processes, is given by K = {ρ∗| 0 < ρ∗ 6 1}.

In order to impose implicitly these constraints, we will rewrite the Young modulus as

E(ρ∗) = [c(ρ∗)γ + IK(ρ∗)] EM (28)

where IK(ρ∗) represents the indicator set of K, i.e.,

IK(ρ∗) =

(
0, if ρ∗ ∈ Kρ;

∞, if ρ∗ /∈ Kρ.
(29)

This expression may be regularized by using a combined internal and external penalty approaches,
i.e., we consider a differentiable function Ψη(ρ∗) such that

IK(ρ∗) = lim
η→0

[Ψη(ρ∗)] (30)

Based on the above results, we consider the following constitutive relations
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Ψη(ρ∗) = η
1
ρ∗

+
1
η

�
〈ρ∗ − 1〉+

�2
(31)

and

E(ρ∗) =
§

c(ρ∗)γ + η
1
ρ∗

+
1
η

�
〈ρ∗ − 1〉+

�ª
EM (32)

with EM representing the Young’s modulus of the fully dense material respectively and η a penalty
parameter.

8 Total Lagrangean formulation – weak form

The approach used here is the total Lagragean formulation. Considering the reference configuration
Ωo, defined at to, a bounded domain with a Lipschitz boundary ∂Ωo subjected to a body force b

defined on Ωo, a prescribed surface traction defined on Γt
o and a prescribed displacement defined on

Γu
o , where ∂Ωo = Γt

o ∪ Γu
o and Γt

o ∩ Γu
o .

Taking the motion function φt : <3 → <3 such that x = φ (xo, t) = φt (xo) ∴ xo = φ−1
t (x). It

follows that the displacement field is defined as: x = u(xo, t)+xo ∴ uo(xo, t) = φt(xo)−xo = x−xo =
x− φ−1

t (x) = u(xo, t). Thus, it is possible to announce the problem in the reference configuration as:

Problem 2 For each t ∈ [0, tf ] determine uo(xo, t) that solves the following boundary value problem
stated as

div P (xo, t) + ρo(xo) b(xo, t) = 0 in Ωo (33)

P (xo, t)no(xo, t) = t̄o(xo, t) in Γt
o (34)

uo(xo, t) = ūo(xo) in Γu
o (35)

with b(xo, t) ∈ L2 (Ωo) and ūo(xo) ∈ H
1/2
00 (Γu

o ) for each t ∈ [0, tf ].
Let us define now the following sets, for each time t ∈ [0, tf ]

Kinu
o =

¦
uo : Ωo → <3

��uo ∈ H1 (Ωo) , uo(xo, t) = ūo(xo) in Γu
o

©
(36)

V aru
o =

¦
v̂ : Ωo → <3

��v̂ ∈ H1 (Ωo) , v̂(xo) = 0 in Γu
o

©
(37)

Thus it has the weak form of the problem

Problem 3 For each t ∈ [0, tf ] determine uo(xo, t) ∈ Kinu
o such thatZ

Ωo

P : ∇v̂ dΩo =
Z

Ωo

ρob · v̂ dΩo +
Z

Γt
o

t̄o · v̂ d∂Ωo, ∀v̂ ∈ V aru
o (38)

For each t ∈ [0, tf ], it can denoting
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= (uo; v̂) =
Z

Ωo

P : ∇v̂ dΩo −
Z

Ωo

ρob · v̂ dΩo −
Z

Γt
o

t̄o · v̂ d∂Ωo, ∀v̂ ∈ V aru
o (39)

Then, the problem can be stated as

Problem 4 For each t ∈ [0, tf ] determine uo(xo, t) ∈ Kinu
o such that

= (uo; v̂) = 0, ∀v̂ ∈ V aru
o (40)

The problem above is approached by Newton method in association with Galerkin-FEM, and the
incremental formulation follows from the schematic algorithm in Tab. 1

Table 1: Newton’s method algorithm – incremental formulation.

For each time step t = tn;

(i) Initialize the iteration counter k ← 0 ;

(ii) Initialize the variable vector u0
n+1 = un;

(iii) Compute the residue vector, error = ‖residue vector‖;
(iv) Do while ( error > tolerance1)

(1) Determine the tangent modulus
�
ℵ(uk

n+1)
�
ijkl

= ∂Pij

∂Fkl

���
u=uk

n+1

(2) Solve the problem
R
Ωo
ℵ(uk

n+1)∇(∆uk
n+1) : ∇v̂dΩo = −=

�
uk

n+1o
; v̂
�

, ∀v̂ ∈ V aru
o ;

(3) Actualize the variable vector uk+1
n+1 = uk

n+1 + ∆uk
n+1;

(4) Compute the new error;

(5) Actualize =
�
uk

n+1; v̂
�
← =

�
uk+1

n+1; v̂
�
and k ← k + 1;

End Do while.
(1): previously defined.

9 Numerical examples

For these applications, one used a mesh with two six points triangular elements. The developed code
is written in Fortran 90 and for post processing, it’s used the GID 8.0 software. The global tolerance
is 10-6.

EXAMPLE 1: Here, the simulation of a uniaxial compression test is presented. The specimen consists
of a cylindrical bar with a radius R=28mm and a height of 50mm. The material parameters used in
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this analysis are described in Table 2. The process consists is prescribing the displacement of the upper
part of the specimen, with a total upsetting of ū = −30 mm, applied in order to compress the body.
Due to the axisymmetry condition, only half of the domain is modeled. Fig. 4 shows the displacement
field, in the y-direction.

 
Figure 4: Compression test.

Table 2: Material Parameters(1).

EM = 928, 09288 MPa νp = 0, 0 c = 0, 3

σo
y = 0, 10582 MPa ρ∗o = 0, 049 MPa M = 4, 0

po
c = 0, 04047 MPa ν = 0, 25 Kv = 0, 005

αp = 0, 1 γ = 1, 54 η = 10−5

(1) see Zhang et al [4], Gibson & Ashby [6] and Gilchrist & Mills [21]

In next figures (see Fig. 5 and Fig. 6), one presents the time evolution of σyy in the body (constant
profile along entire body) for two different rates. One can observe the evolution of stress σyy component
in the observation time. Note that the numerical results shows good agreement to the experimental
solution of the problem for load time step [4, 6, 21].
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Figure 5: Compression test (0,0016 s−1).

 
Figure 6: Compression test (0,08 s−1).

Mechanics of Solids in Brazil 2009, H.S. da Costa Mattos & Marcílio Alves (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-43-7



An application for polymeric foams 61

At the final observation instant, we get the following results: ε̄vp
v = ε̄vp

a = 0, 90196 (rate 0,0016 s−1),
ε̄vp
v = ε̄vp

a = 0, 90058 (rate 0,08 s−1), ρ∗ = 0, 1216 (rates 0,0016 s−1 and 0,08 s−1) (constant profile
along entire body – see Fig. 7).

 
Figure 7: Relative density evolution.

EXAMPLE 2: This example considers an axisymmetric problem that consists of the upsetting of
a conical slab, whose dimensions are: r1=90mm; r2=45mm and h=100mm. The analysis consists of
prescribing the displacement of the upper wall, with a total upsetting of ū = −50 mm, as shown in Fig.
8, and employs an integration mesh with 240 isoparametric tri-6 elements. Due to the axisymmetry
condition, only half of the domain is modeled. Fig. 9 shows the displacement field, in the y-direction
at the final observation instant (rates 0,0016 s−1 and 0,08 s−1).

The Fig. 10 shows the Cauchy stress component σxx profile (rate 0,08 s−1), Fig. 11 shows the
Cauchy stress component σxx profile (rate 0,0016 s−1),. Fig. 12 shows the Cauchy stress component
σxy profile (rate 0,08 s−1), Fig. 13 shows the Cauchy stress component σxy profile (rate 0,0016 s−1),
Fig. 14 shows the Cauchy stress component σyy profile (rate 0,08 s−1), Fig. 15 shows the Cauchy
stress component σyy profile (rate 0,0016 s−1), Fig. 16 shows the relative density ρ∗ profile (rates 0,08
s−1 and 0,0016 s−1), and the Fig. 17 and Fig.18 show the equivalent von Misses stress profile for rates
0,08 s−1 and 0,0016 s−1.

The evolutions of the Cauchy Stress versus the logarithm strain and of the relative density versus
the volumetric plastic strain are shown in Figure 10, at points A and B. Point A is at the left upper
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edge and B at the right upper edge of the mesh depicted in Figure 8. The sub indexes 1 and 2 refer
to the solution obtained by using the FE and EFG methods respectively.

 
Figure 8: Conical slab.

 
Figure 9: Y-displacement (mm).
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Figure 10: σxx profile (0,08s−1).

 
Figure 11: σxx profile (0,0016s−1).

 
Figure 12: σxy profile (0,08s−1).
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Figure 13: σxy profile (0,0016s−1).

 
Figure 14: σyy profile (0,08s−1).

 
Figure 15: σyy profile (0,0016s−1).
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Figure 16: Relative density (0,0016 s−1 and 0,08 s−1).

 
Figure 17: von Misses stress profile (0,08 s−1).

 
Figure 18: von Misses stress profile (0,0016s−1).
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10 Conclusions

The polymeric foam constitutive behavior is extremely complex on the micro structural scale. Cellular
buckling under compression initiates a long stress plateau. Further compression causes stress build up
due to foam consolidation.

A rate-dependent elasto-viscoplastic foam constitutive model, that features a single-surface yield
criterion, has been developed. A non associated plastic flow law and the relative density dependence
showed reasonable prediction for the responses of rigid polymeric foams under monotonic loading
conditions.

The proposed polymeric foam model and the Galerkin-FEM algorithms was tested with a typical
foam problem and has performed adequately. From the above considerations, one may conclude that
the proposed model and numerical procedure showed to be adequate for the simulation of large strain
behavior of polymeric crushable foams under monotonic loading conditions.
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