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Abstract

In the present work a methodology of fault analysis in mechanical systems has been developed using Kalman
Filter state observers, in which, the input to the observers are identified by Fourier, Legendre and Chebyshev
orthogonal functions. Once the proportional-integral observer is presented to the unknown inputs, this observer
is able to identify the inputs to the system and these are used to the fault detection by means of Kalman filter
observer. Here the methodology of parameters and force identification can be seen using only the response of
the system thought orthogonal functions. The methodology developed is applied on a composed structure of
the assembled using the shake tables in the laboratory.

1 Introduction

With the increase in production process, there is greater demand from industries for machines and
equipment capable of executing more operations working in round the clock. As well as submitted
the high dynamic forces. Usually these mechanisms are very expensive and therefore one of the major
concerns of industry is to keep its equipment functioning without on necessary breakdowns. With this
constant concern, in lately, development of new techniques has been verified for detection and local-
ization of faults in mechanical systems submitted to dynamic loads. In order to guarantee continuous
operation mechanical systems must be supervised and monitored so that the faults are diagnosed and
repaired as fast as possible, if not so the disturbance in normal operation can to take to the deteriora-
tion of the system performance or even to the dangerous situations. Robust observers can reconstruct
the unmeasured or estimate the motion of the system that can not be measured directly. Therefore,
faults can be detected in the system by being able to monitor them through the reconstruction of the
states. The existing methodologies employ state observers are usually used in control problems and
detection of possible faults in sensors and instruments. The present work the state observers are used
to fault detection in mechanical systems, using orthogonal functions or Proportional and Integral (PI)
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observer to estimate the unknown inputs. The Kalman filter observer is employed for the location and
quantification of the faults. In previous works the identification of the faults using only state observers
has been possible with the previous knowledge of the inputs; in this work the unknown input will be
found using the orthogonal functions or PI observers.

Methods of identification of forces or parameters, with the objective of diagnosis of faults in mechan-
ical systems, using orthogonals functions, have been developed since the end of 80’s until the current
days. These methods which have started with Chun (1987), [1] used the Fourier series for the iden-
tification of the structural parameters, and developed the inverse methodology for the identification
of the forces. Pacheco [2], in his doctoral thesis, employed some orthogonals functions for parameters
identification through the comparisons between the functions. Pacheco and Steffen [3] published a
work where the orthogonals functions were used for identification of parameters in non linear systems.
Melo [4] studied the behavior of the error found in the identification of the parameters varying the
number of terms of expansion of the orthogonal functions for some functions [5]. In recent work, Melo
and Morais [6], had as objective to identify the forces and the parameters of the mechanical systems
together, in the previos described works, the identification of the parameters alone was possible with
the previous knowledge of the inputs.

It is physical and economically unfeasible, in some control systems, for transducers to be placed to
measure all the variables of state. When analyzing the methodology of state observers, it has been
found that some possess the capacity to reconstruct the inaccessible states. However, the necessary
condition for this reconstruction is that the states are observable [7, 8]. In the observers described by
Luenberger the gain is determined through algorithms of allocation of eigenvalues and eigenvectors
of the observer matrix under a certain criterion. A careful analysis must be made because not only
that the speed of estimation, determined for the eigenvalues, is not very great but that sensitivity
to the noise in the sensor is not very large also. This type of observer corresponds to a deterministic
observer. Of course, the problem of the noise in the sensor leads stochastic observers who not only
handle better the noise in the sensor [9], but are also characterized by having a gain that is optimized
under a certain criterion, as it will be seen ahead. That optimized observer, or stochastic observer, is
known as Kalman-Bucy (KF) filter [10]. The filter of Kalman has demonstrated to be useful in many
applications [11], however, the interest here is in its application to faults detection.

2 Orthogonals functions

A set of real functions φk(t), k = 1, 2, 3... is said to be orthonormal in the interval [a, b] ∈ <, if:

b∫

a

ϕm(t)ϕn(t)d(t) =δmn Where:

{
δmn = 0 ⇒ m 6= n

δmn = 1 ⇒ m = n
(1)

Where δmn is the Kronecker Delta.
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If a function f(t)is continuous or partially continuous in the interval [a, b], then f(t) can be expanded
in series of orthonormal functions, as follows:

f(t) =
∝∑

n=1

cnφn(t) (2)

Such series, called orthonormal, constitute generalizations of the Fourier series. Admitting that the
sum in Eq. (2) converges to f(t), we can multiply both members for φm(t) and integrate them in the
interval [a, b], with cm as the generalized coefficients of Fourier.

The following property, related to the successive integration of the vector basis:

t∫

0

...︸︷︷︸
ntimes

t∫

0

{φ(τ)}(dτ) ∼= [P ]n{φ(t)} (3)

Where [P ] ∈ <r,r is a square matrix with constant elements, called operational matrix [1], and
{φ(t)} = {φ0(t)φ1(t)...φr(t)}T is the vector basis of the orthonormal series. In fact, if a complete
vector base is regarded, or is other words, if the series are not truncated, the relation ship obtained
in Eq. (4) becomes an equality. However, in practice, it becomes not suitable, due to the high order
of the matrix [P ] obtained. In the following sections, the vectorial basis and the operational matrix
related to each type of orthogonal function considered in this paper are briefly reviewed [2].

Fourier series

Vectorial basis in the interval [0, T ] Operational matrix integration

{ϕ(t)} = {ϕ0(t) ϕ1(t) . . . ϕs(t) ϕ∗1(t) . . . ϕ∗s(t)}T

ϕn(t) = cos
2nπt

T
, n = 0, 1, 2, . . . , s

ϕ∗n(t) = sin
2nπt

T
, n = 1, 2, . . . , s r = 2s + 1

[P ] =




T
2 {0}1xs −T

π {ẽ}T
s

{0}sx1 [0]sxs
T
2π [Ĩ]sxs

T
2π{ẽ}s − T

2π [Ĩ]sxs [0]sxs




rxr

{ẽ} =
[

1 1/2 1/3 . . . 1/s
]

[
Ĩ
]

sxs
= diag

{
1 1/2 1/3 . . . 1/s

}

T = Period of sampling and s = number of terms of Fourier in sines and cosines
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Legendre polynomials

Recursive formula on the interval t ∈ [0, tf ] Operational matrix integration

(n + 1)pn+1(t) = (2n + 1)
(

2t
tf
− 1

)
pn(t)− npn−1(t),

n = 1, 2, 3, . . . , r − 1

p0(t) = 1

p1(t) = 2t/tf − 1

[P ] =
tf

2




1 1 0 0 · · · 0

− 1
3

0 1
3

0 · · · 0

0 − 1
5

0 1
5

· · · 0

...
...

. . .
. . .

. . .
...

0 0 · · · −1
2r−3

0 1
2r−3

0 0 · · · 0 −1
2r−1

0




r = number of terms truncated

Chebyshev polynomials

Recursive formula on the interval t ∈ [0, tf ]

Ti+1(t) = 2
(

2t
tf
− 1

)
Ti(t)− Ti−1(t)

i = 1, 2, . . . , r − 1

T0(t) = 1

T1(t) = 2t
tf
− 1

Operational matrix integration

[P ] =
tf
2




1 1 0 0 . . . 0 0 0

−1/4 0 1/4 0 . . . 0 0 0

−1/3 −1/2 0 1/6 . . . 0 0 0
...

...
...

...
. . .

...
...

...
(−1)r−1

(r−1)(r−3) 0 0 0 . . . −1
2(r−3) 0 1

2(r−1)
(−1)r

r(r−2) 0 0 0 . . . 0 −1
2(r−2) 0




r = number of terms truncated
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2.1 Identification of mechanical systems through orthogonal functions

The proposed identification method can be exploited either on the free or forced time domain responses,
as functions of displacements, velocities or accelerations. Since the formulations for these three kinds
of responses are quite similar [4], only the formulation for forced systems in terms of displacements
will be presented.

The development of the method starts with the equation of motion of a forced mechanical system
of N degrees of freedom:

[M ]
{..
x(t)

}
+ [C]

{ .
x(t)

}
+ [K] {x(t)} = {f (t)} (4)

Where [M], [C] and [K] are the inertia, damping and stiffness N-order matrices respectively; {x(t)}
is the vector of displacement time responses and {f(t)} is the vector of exciting forces.

Integrating Eq. (4) twice in the interval [0,t], it becomes:

[M ]
({x(t)} − {x(0)} − { .

x(0)}t) + [C]
(

t∫
0

{x(τ)}dτ − {x(0)}t
)

+ [K]
t∫
0

t∫
0

{x(τ)}dτ2 =

=
t∫
0

t∫
0

{f(τ)}dτ2

(5)

The signals {x(t)} and {f(t)} can be expanded in the truncated series of r orthogonal functions as
follows:

{x(t)} = [X]{φ(t)} and {f(t)} = [F ]{φ(t)} (6)

Where: [X] ∈ <N,r is the matrix of the coefficients of expansion of {x(t)}
[F ] ∈ <N,r is the matrix of the coefficients of expansion of {f(t)}
Substituting Eq. (6) in Eq. (5) and applying the integral property given by Eq. (3), the following

system of algebraic equations can be obtained [6],

[
[M]− [M] {x (0)}{− [M] { .

x (0) } − [C] {x (0)}} [C] [K]
]




[X]

{e}T

{e}T [P ]

[X] [P ]

[X] [P ]2




= [F ] [P ]2 (7)

Eq.(7) can be rewritten as

[
[F ] [M ] {x (0)} [M ]

{ .
x (0)

}
+ [C] {x (0)}]




[P ]

{e}T

{e}T [P ]


 = [M ] [X] + [C] [X] [P ] + [K] [X] [P ]2 (8)
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And so, the Eq. (7) and the Eq. (8) can be represented as:

[H] [J ] = [E] (9)

Identifying H to the Eq. (8) we can to determine the structural parameters of the system. And
doing the same to the Eq. (9) we can determine the system inputs.

3 General structure of the State Observer: Kalman filter

Considering a linear system, invariant and observable in the time:

_
S :

{ •
x (t) = Ax(t) + Bu (t) + Lξ(t)

y (t) = Cx(t) + η (t)
(10)

Where: x(t) is the state vector nx1, u(t) is the input vector px1, y(t) is the output vector kx1, A is
the matrix of system nxn (dynamic matrix), B is the matrix of distribution nxp (matrix of inputs),
C is the matrix of measures kxn, being n the order of the system, p the number of inputs u(t), and
k the number of outputs y(t). The vector ξ is the noise of excitement in the state and represents a
disturbance in the system and the vector η is called noise in the sensor [12]. Due to the stochastic nature
of the vectors ξandη, in the Kalman Filter, they have certain statistical properties, corresponding to
the white Gaussian noise, stationary (invariant in the time) and not correlated between themselves.
Now we can define the matrices ΞandΘ, called intensity of the noise ξandη, respectively, symmetrical
and defined positive:

Ξ = ΞT ≥ 0, Θ = ΘT > 0 (11)

Given the assumptions above, the problem of optimum estimate of the state vector x in presence
of white noises (as vectors of state as the measured variable) can be formulated to find the optimum
value (filter of Kalman) that generates an estimate x̄ for the real state vector x, so that minimizes the
covariance of the error estimation (Eq. 12) is minimized:

e(t) = x̄(t)− x(t) (12)

=KF = E
[
e (t) eT (t)

]
(13)

Kalman and Bucy have proved that the best structure for the Kalman filter (among all the possible
structures, linear and nonlinear) when the dynamics of the system is linear and the noises are white
and Gaussian, amounts to be:

_
S

KF
: {¯̇x (t) = Ax̄ (t) + Bu (t) + KKF (y (t)− Cx̄ (t)) (14)

In which KKF is the matrix of the state observer, {x̄ (t)} is the state vector of the observer.

Mechanics of Solids in Brazil 2007, Marcílio Alves & H.S. da Costa Mattos (Editors)
Brazilian Society of Mechanical Sciences and Engineering, ISBN 978-85-85769-30-7



Fault detection using state observers identified by orthogonal functions and PI observers 363

4 Filter Algebraic Riccati Equation (Fare)

The solution of the optimization problem can be found in literature. Since in the present work the
main interest is the application of the control methodologies, we present it here without any proof.
The optimum gain KKF for the Kalman filter is given by the following relation:

KKF = SKF CT Θ−1 (15)

In which SKF is defined like a symmetrical and positive matrix satisfying the Riccati equation for
the Kalman filter (FARE):

SKF AT + ASKF + LΞLT − SKF CT Θ−1CSKF = 0 (16)

5 Method of the state observers with unknown inputs

The state observers where all the inputs of the system must be known and available have some utility
in the case of only one input to the control system. For the cases of unknown inputs or disturbances
which cannot be measured or its measurement is very difficult or simply impossible, the performance
of the observer can very be poor. In this work a methodology of diagnose of faults has been developed
using observers of state in which its input is considered unknown or partially known in which the
proportional and integral observer is used to estimate the unknown inputs, and, the gain of this
observer is determined by the gain given by the Kalman Filter. After the identification of the unknown
inputs these are used for the detection of possible faults that are occurring in the systems. For this,
the Kalman Filter was used to generate unknown states.

A very convenient representation for systems with these characteristics is as indicated by the fol-
lowing equation:

S :

{ •
x (t) = Ax(t) + Bu (t) + Bdvd (t)

y (t) = Cx(t)
(17)

In which: x(t) is a state vector nx1, u (t) is a input vector rx1, y (t) is a output vector mx1, vd (t)
is a vector of disturbance or unknown input px1, A is a matrix of system nxn (dynamic matrix), B is
a matrix of distribution nxr (matrix of input), C is the matrix of measures mxn and Bd is the matrix
distribution of disturbance pxn, being n the order of the system, r the number of inputs u(t), m the
number of outputs y(t) and p the number of disturbance vd(t).

The problem of state estimation of a linear and invariant the system with both known and unknown
inputs has been subject of researching during the last decades, deserving considerable importance,
because in real systems, there are many situations where the disturbance are present or some inputs
are inaccessible, precluding the use of conventional observers in which all the inputs are known.
Therefore, an observer capable of estimate the state for linear system with partially unknown inputs,
not sensible to disturbance, can be of great utility.

The main idea is designing an observer to estimate the disturbance vd. The Fig. 1 suggests the
function of this observer.
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Figure 1: Observer with unknown inputs

6 Modeling of the observer with unknown inputs

According this approach, we verify that the dynamics of the disturbance vector satisfies the following
differential equation:

vd (t) = Cdw (t) (18)

.
w (t) = Adw (t) (19)

In which w represents the disturbance state in the matrix Ad and the matrix Cd indicates if the
disturbance is dependent of the state. The choice for these matrices depends on the kind of disturbance.
For example, in the case where the disturbance vd is constant, a convenient choice this is that matrix
Ad = 0 and Cd = I (I is a identity matrix). Arranging the Eq. (17) with (18) and (19) we get
augmented:

Sa :





ẋa (t) =

[
ẋ (t)

ẇ (t)

]
=

[
A BdCd

0 Ad

][
x (t)

w (t)

]
+

[
B

0

]
u (t)

y (t) =
[

C 0
] [

x (t)

vd (t)

] (20)

It has been verified in the equation above that w is not controllable through of u. But, in general,
it is observable [10] and with this, it is possible to design an observer for this system that estimate
both variables x and w. Thus, an observer of full order for this new system will be:

[
˙̂x (t)
˙̂w (t)

]
=

[
A BdCd

0 Ad

][
x̂ (t)

ŵ (t)

]
+

[
B

0

]
u (t) +

[
K1

K2

]
(y (t)− Cx̂ (t)) (21)
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In which the matrix K =
[

KT
1 K

T

2

]T

has been added to guarantee stability for the observer.

In full equation, we have:

Ŝed/ds :

{
˙̂x(t) = Ax̂(t) + Bu(t) + BdCdŵ(t) + K1(y(t)− Cx̂(t))
˙̂w(t) = Adŵ(t) + K2(y(t)− Cx̂(t))

(22)

7 Proportional-integral observer

When the disturbance spectrum does not contain high frequencies, the observer in the section 4.1 can
be used considering Ad = 0 and Cd = I getting a simplification in the model. In this case the part
corresponding to the estimation the disturbance vector becomes a bank of integrators and the part
corresponding to the estimation of the state vector becomes in proportional and integral to the residual:
y(t) − Cx̂(t). This observer is called proportional-integral or PI and has superior properties whom
compared with the full-order proportional observer. The proportional-integral observer is capable of
estimate any disturbance (constant, linear and nonlinear) but it has to be slower than the time constant
of integral action and the number of measurements can not be less that the number of disturbance
causing. By increasing the integral gain it is possible to reject the faster disturbances, however, the
negative effect of decreasing the stability of the observer. Using the Eq. (22), we have for the case of
proportional-integral observer:

Ŝpi :

{
˙̂x(t) = Ax̂(t) + Bu(t) + Bdvd(t) + KP (y(t)− Cx̂(t))
˙̂vd(t) = KI(y(t)− Cx̂(t))

(23)

Or equivalent:

Ŝpi :
{

˙̂xa(t) = Aax̂a(t) + Bau(t) + Ka(y(t)− Cax̂a(t)) (24)

In which: x̂a =

[
x̂

vd

]
, Aa =

[
A Bd

0 0

]
, Ba =

[
B

0

]
, Ca =

[
C 0

]
, Ka =

[
KP

KI

]

The necessary and sufficient condition for the existence of the observer is that the pair (Aa, Ca)
is at the least, observable. Thus it is possible where the eigenvalues of the following matrix onto the
complex plan:

Âa = Aa −KaCa =

[
A−KP C Bd

−KIC 0

]
(25)

In this work the gain of observer PI is determined by the gain acquired from Kalman Filter presented
in section (3.1).
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8 Example

In this section an example is presented of the determination of an unknown input in a robotic arm as
shown in Fig. 2.

 

 

 

 

Figure 2: Flexible arm of a robot with unknown input (disturbance) from the weight.

One mathematical model can be represented by the state equation, Eq. (17), in which the matrices
are given by:

A =




0 0 1 0

0 0 0 1

−K/JM K/JM −BM/JM 0

K/I −K/I 0 0




, B =




0

0

Ke/JM

0




,
C =

[
1 0 0 0

0 1 0 0

]

and x =
[

θ1 θ2 ω1 ω2

]T

In which:
θ1(t) Angular displacement of the robot arm (θ1(0)=15˚)

θ2(t) Angular displacement in the output of the reduction box (θ2(0)=15˚).

ω1(t) Angular speed of the robot arm (ω1(0)=0).

ω2(t) Speed in the output of the reduction box (ω2(0)=0).

V Voltage of armour of motor DC (5 V and 3 rad/s square shaped wave).

I Inertia of the arm robot (= 0.4Kg m2).

K Torsional stiffness of the spring (= 1 N m/rad).

JM Inertia equivalent of the motor including reduction box (= 0,0424 kg m2)

BM Viscous friction in the motor (= 0,0138 N m s/rad).

Ke Momentum gain for the motor (= 0,0403 Nm/V ).
Simulating the system the Runge Kutta method has been employed, in which it is considered as

unknown output a nonlinear force from the weight of the arm and equal to Td = Mgl sin(θ2) with
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M = 1 Kg, g = 9,8 Kg ms −2 and l = 0,3 m. For the PI observer, the nonlinear force is considered
as being an interferential input to the system. In the Fig. 3 the real input and the estimated by the
observer are presented. 

 

 

 

 
Figure 3: Unknown input estimated through PI observer

9 Design of state observers

The design of a system is presented in the Fig. 4 working along side the state observers, including the
known excitement force u(t), the unknown inputs vd(t), the measured outputs y(t), the PI observers
used to identify the unknown input, the global and robust observers to the parameters subject to
faults s1. . . , sn and a logical decision unit. The global state observer is responsible for the detection
of the fault, while the robust state observer is responsible for their location. The global observer is
a copy of the original system, and analyzes all the system searching for possible faults. The robust
state observer can detect the fault if it occurs in the parameter for which it was designed. We have to
design a bank of robust observers, each one in relationship to a parameter to be monitored, in order
to obtain a good location of the fault.

When the system is operating adequately, without indications of faults, the global state observer
answers equal the real system. When one component of the system in focus starts to fail, the state
observer immediately feels the influence of this process. The global and robust observers are modeled,
in this work, using the methodology of the Kalman Filter for its good behavior under noise in the
system. They are included in a bank of observers and the RMS values of the differences between
the real displacement (measured) signals and the ones generated by the observers are analyzed in a
logical decision unit that evaluates progression trend of the fault and sets in motion, if necessary, an
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alarm system. The alarm system can also be triggered under a parameter variation and this is on line
process.

 

  

 

 

Figure 4: System of Robust Observation.

 

       

 

Figure 5: Truss Structure with 20 bars

10 Simulation and results for a 20-bars truss structure

To validate the methodology of identification and location of faults applied to the mechanical systems
using the state observer, Kalman filter, with unknown forces identified through PI observers, has been
simulated a 20-bars truss structure as shown in the Fig. 5. For this, we used the finite elements method
to be able to simulate the structure, in which each bar represents a composite element comprising two
joints and each joint having two degrees of freedom (d.o.f.), the x and y displacements. Considering
that the structure has restrictions in the joints 1 and 2, we have a system with 16 d.o.f., as shown
in the Fig. 5. The system was excited in the join 9 and 10 in the direction of y with 300N and 500N
harmonic forces and 250 rad/s and 3700 rad/s frequencies, in that order. The force applied in join 9
is considered unknown and will be determined by the PI observer, as to be seen in the Fig. 7.

All the elements that compose the truss are isoperimetric with the following properties: ρ= 7850
kg/m3, E = 200GPa, height = 2.0cm, width = 3.0cm. All the bars in the x direction are 2.0m long
and in the y direction is 0.5m long. During the simulation considered a low proportional damping for
the matrix of mass and the stiffness of the system given by: C=1.0e-10*K+1.0e-04*M. The output of
this system was evaluated through the fourth order method of Runge-Kutta with 4096 points in the
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interval of 1.0s. We used the output in x-direction (joints 3 and 7) and a 30% reduction in the area of
bar 4 to simulate the fault. To validate the robustness of the Kalman filter in the presence of noises
in the signals, added, to the input, a white noise has been added with energy, 5% of the value of the
energy of the input sign u(t).

A bank of robust observers is generated for the parameters subjected to the faults with 10% vari-
ation in the area of each bar. It has been considered, in this work, that all the bars of the system
are susceptive to the occurrence of a possible fault. Fig. 7 depicts the inverse values of RMS differ-
ences found between the “measured” signal in the structure and the signals generated from the global
observers (0% of fault) and from the robust observers, reducing in 10% the value of each parameter
subject to fault. In Fig. 6 the locating the fault provoked in bar 4 with 30% of reduction in this
parameter can be promptly seen.

 

     

 

Figure 6: Bank of robust observers generated
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Figure 7: Estimated input by PI observer

11 Experimental Results

A dynamic system constituted of shake tables has been built using metallic stainless steel blades to
represent the stiffness of the system; aluminum plates for the tables and rubber to simulate viscous
damping. The rubbers are fixed between the blades, as it can be observed in the Fig. 8. The structure
has been modeled like a system of three degrees of freedom with discrete parameters. The structural
parameters have been determined using techniques of experimental modal analysis. For this, the
parameters of mass, damping and stiffness have been evaluated for each table separately. In the Tab.
1 the results are presented. The bottom table has been excited with a harmonic force and the signals
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have been acquired during 1,0 s and with 2048 points in this interval, using DASYLAB software with
four channel for signals acquisition, the three first channels for acquisition of the of displacement
signals and the last channel for determination of the excitement force. Has been the signal used as
the answers measured by the accelerometers have been integrated two times, using the Bruell’s Nexus
Conditioner/Amplifier of signals.

 

   

 

 

 

 

 

Figure 8: Test Rig-Vibratory System

Table 1: Space parameters identified for the structure from analyze modal experimental classic.

Table Lower Intermediate Upper

M (Kg) 6,644 4,619 1,889

K (KN/m) 275,367 114,489 104,993

C (Ns/m) 100,042 36,360 29,660

Excitement force to the system has been measured to compare and verify the method efficacy. In
the Fig. 9 has been measured the inputs estimated by means of the Fourier, Legendre and Chebyshev
orthogonal functions are shown. It Has been used during the identification of the inputs 100 terms of
expansion, as exposed in the work [4].

For the fault detection only the output of the displacement measured in the lower table, has been
used. We initiated the process of identification and location of the fault when a plate of the upper
table has been removed and verified a reduction of 8,9% has been found in the stiffness. A bank of
robust observers was presented for the parameters subjected to the faults with 1% of variation in
the stiffness. In the Fig. 10 the inverse values of differences RMS are presented, found between the
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Figure 9: Input identified through Fourier, Legendre and Chebyshev methods, respectively.

measured signal in the structure and the signals generated for the global observers (0% of fault). For
the robust observers, we reduced in 1% the value of each parameter subject to fault. In Fig. 10 the fault
provoked in the upper table could be located and quantified in the region of 9% of reduction in the
stiffness by way the inputs identified through Fourier, Legendre and Chebyshev methods, respectively.

 

 

 

 

 

  

 

Figure 10: Fault detection and location through Fourier, Legendre and Chebyshev methods.

In according the Figure 10, we had good results obtained during the force and parameters identifi-
cations.
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12 The last consideration

In the present work has been developed a methodology of diagnosis of faults deploying state observers.
The Kalman Filter has been used to the construction of bank of observers, and in this case the observer
needs all the inputs known or with white noise because it is the only kind of interference which can
be used to design the Kalman filter. The inputs are identified by the means of orthogonal functions
or proportional and integral observer. It was presented a robotic arm, in which, it has been possible
to identify the external force due the arm mass using PI observer. We used a 20-bars truss structure
to detect fault, in which two inputs have been considered, being that one of them unknown and
identified by PI observer. The experimental validation of the methodology has been carried through
in a simple system of three degrees of freedom, with force estimated using orthogonal functions. The
fault was precisely identified for all functions used. Regarding the computational time necessary for
the assembly of the bank of robust observers to the parameters subject to faults, this is somewhat
high, but actually the bank of state observers is assembled just once, in such way that for the on-line
acquisition of signals in a structure, reassembling the bank of observers is not necessary any longer.
In fact, thanks to this, we can conclude that method presented is quite suitable processes of on-line
detection of faults.
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