
  

 

 
Figure 6: Barriers for Robust Control 

 

The methodology to calculate the matrices H and G is presented below: 

1) The first step is to choose the Gaussian perturbation input matrix, L���M�&����and μ, respecting the performance 

barriers presented in Fig. 6, to fit the  FRF of: 

 
 

  
                 

2) Calculate the Kalman filter gain matrix H���M�&), solving the following Algebraic Riccati Equation (ARE): 

A ��+ �� A
T+ L L

T�í 1

��
�� C

T
C ��= 0⇒H= 1

��
�� C

T
 

and verify the Kalman identity using:  

                       

 

3) Solve the following ARE, finding X: 

�í X A�í AT X�í Q3+ X B R2
�í 1BT X= 0

 

where 

Q3 is a positive semi-defined given by: 
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4) Define the controller gain matrix G by: 

    
            

 

5) It is possible to verify the robustness of stability condition  using Fig. 6 and  the FRF of : 

                                                            

 The result of the control synthesis is shown in Fig.7 through three FRF for the passive suspension system (thin 

lines) and the semi-active suspension system (bold lines) in closed loop. 

 
Figure 7. Passive and semi-active system FRF 

As shown in Fig. 7, the acceleration amplitude of the vehicle body is significantly reduced along the frequency 

range of interest, leading to a considerable improvement in vehicle comfort. In the second graph, it can be noticed that 

there was not a significant increase in the stroke amplitude in low frequencies, which is desired, since in this way 

shocks are avoided due to suspension course limits. On the other hand, the semi-active closed loop system  reduced the 

wheel hop at 1.8 Hz and avoid the increase of wheel-hop at 10Hz, which can improve the adherence between wheel and 

ground, with a positive impact  in the vehicle handling performance.  

4. ELECTRONIC HARDWARE AND SOFTWARE 

The electronic hardware consists of: 

 four accelerometers sensors assemble in the vehicle body over each wheel,  

 four potentiometers installed at each suspension to measure the relative distance between the wheel and the body, 

 a digital processor board to read sensors signals, process control algorithm and determine the force at each damper, 

 four electric power-drives to generate the electrical currents necessary to activate the dampers force. 

 The DSP based digital processor board is shown at Fig. 8. 
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Figure 8. DSP board 

It was used the Texas Instruments™ DSP (TMS320F2812) with 150Mips. 

The control algorithm software was developed using the Matlab™/Simulink software, where a block diagram of the 

control was created. Matlab™ can translate the diagrams C language implemented in a Code Composer software (by 

Texas Instruments™), which translates the program to a DSP machine language and transfer the program to a flash 
memory at the processor board. 

To improve the performance of the semi-active actuators a discrete-time model of each MR damper was used in the 

control algorithm. This strategy and its benefits are described in Crivellaro (2008), volume 2. The discrete-time model 

used was described in Crivellaro and Donha (2008). 

5. EXPERIMENTAL TESTS 

For tests evaluation, six performance indexes were evaluated: 

 a2: the average RMS acceleration of four accelerometers installed in the vehicle body; 

 d12: the maximum absolute value of the potentiometers measurement installed between the wheel and the body; 

 torsion:  index calculated from the sum of the absolute value of the frequency spectra (from 0 to 12.5 Hz) of the 

PSD curve of the torsion mode of acceleration signal; 

 az: index calculated from by the sum of the weighted value (according the weighting curve defined in SAE J1490, 
1987) of the frequency spectra (from 0 to 12.5 Hz) of the PSD curve of acceleration in ‘z’ direction (vertical) acting 

over the vehicle driver; 

 ay: index calculated from the sum of the weighted value (according the weighting curve defined in SAE J1490, 

1987) of the frequency spectra (from 0 to 12.5 Hz) of the PSD curve of acceleration in ‘y’ direction (transversely) 

acting over the vehicle driver and 

 jerk: the derivative of a2. 

The experimental tests consisted in to drive the vehicle on a plan but irregular terrain in a straight line, along 100 m at 

20 km/h approximately. The sensor signals were sampled at 25 Hz rate, in 15 experiments: 10 using the conventional 

suspension system and 5 using a semi-active suspension system. 
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Figure 11. “Radar” graph of index results in the tests 

Figure 11 shows the statistical results of experimental tests. The red line shows the conventional suspension system 

results and the blue line the semi-active system results. Lower values represent better performances for the all six index. 

The uncertainty margins are showed in yellow area for red curve and light blue area for blue curve.  As shows figure 11, 

except for d12, all other index were improved using semi-active suspension system. Statistically, it is not possible to say 
that there is a real difference in d12 results; anyway it is expected a deterioration in this index. 

6. CONCLUSION 

As a conclusion, this work could demonstrate the viability of semi-active control systems to pickup truck suspension 

applications. Semi-active actuators based on magnet-rheological (MR) fluids show a satisfactory performance, although 

its time response is around 20ms. If the MR shock absorber design is improved to reach a time response of 5 ms, the 

semi-active system performance will certainly be improved.  The main advantage of MR shock absorber is its 

robustness and durability, when using the most advanced MR fluid available.    

 

The control technique applied could keep the compromise between comfort and tire/road adherence satisfactorily, but 

this condition limited the semi-active system performance. Performance enhancement could be reached, for example, 

using adaptive control techniques, since the compromise between comfort and adherence could be relaxed, i.e., the 
control would focus in comfort when the vehicle is running in a straight line, and focus in the adherence when the 

vehicle is doing any maneuver.  

 

The next step in this research is to evaluate other form of robust control, as for example, the H∞ approach. Another 

possible future work is the development of a predictive control of the rear axle based on the behavior of the front axle. 
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