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Abstract. Currently PID controllers are widely used in industrial process control, but controllers which use AI 
techniques, such as fuzzy, neural networks and hybrid techniques, are no longer restricted to academic research. They 
are also gaining ground among industrial applications. However, each type of controller, depending on the tuning or 
training technique, presents better performance in certain regions or operation points, and that the design and 
implementation of these controllers frequently depends of proprietary software, which usually has a very high cost. 
Aiming to have an open source environment capable of tuning PI, PD or PID fuzzy controllers, while determining the 
best control signal for each instant and switching between those controllers, this work proposes an algorithm of 
reinforcement learning, named Q-learning to identify which controller is best suited to work in different linear regions 
of the system. It is used a soft-switching technique to switch between control signals and the integral of the error as 
metric for selection of the most suitable controller. For validation and testing of this proposal, it is used a system level 
control of Quanser, where the Q-learning algorithm is trained using the ε-greedy policy. Test results display the system 
switching among controllers and the comparison with each controller performing separately in order to prove the 
functioning and effectiveness of the proposed implementation. 
 
Keywords: Intelligent system, PID, Fuzzy, Q-learning, control signal soft-switching. 

 
1. INTRODUCTION  

 
PID controllers are extensively used to control a wide variety of industrial processes, mainly because they are 

robust, easily understood and capable of satisfactory performance (Wang, 2001; Ingimundarson and Hägglund, 2002; 
Piazzi and Visioli, 2002; Zhong and Li, 2002; Chen and Seborg, 2003; Åström and Hägglund, 2004; Faccin, 2004, 
Fonseca et al., 2004). However, complexity and nonlinearities of real systems have stimulated new control techniques 
to emerge lately. Fuzzy controllers are suggested as one of them to replace the traditional PID ones. Controllers with 
fuzzy logic have been used to control different types of systems, ranging from the simplest systems, such as control of 
inverted pendulum shown in a study of Mohanlal and Kaimal (2002) to more complex systems such as autonomous 
robot navigation, as proposed in the work of Sanchez-Solan et al. (2007), Baturone et al. (2008) and Raguraman (2009). 

In the industry the use of different controllers for the same process is already usual, but the most common technique 
is the gain-scheduled, as in the work presented by Fontes et al. (2008) which used it to control a pH neutralization 
process. The purpose of the gain-scheduled technique is to switch among multiple controllers of the same type (PID), 
tuned to act differently in the various regions of process operation. 

Research has been proposed with the intention of better controlling industrial processes, considering the different 
characteristics inherent to classical (PID) and intelligent controllers (fuzzy), and different tunings approaches for each 
of these controllers in order to work in different regions of operation of the same industrial process. One of the papers 
regarding switching techniques among different controllers is presented by Diniz et al. (2010). It proposes the 
implementation of a system for automatic switching among controllers, PI, fuzzy and neural, implemented with the help 
of MatLab ® being used to control a system of levels of Quanser ®. 

The idea proposed by Diniz et al. (2010) formed the basis for the development of this research, although no soft 
switching technique was proposed in the cited work. Switching technique among controllers can cause serious 
mechanical or electrical problems in real systems, when low signal values are applied by controllers and it is necessary 
to switch to higher ones provided by more aggressive controllers. 
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Another improvement in the work proposed by Diniz et al. (2010) presented in this work is the change in calculating 
the area of the figure when occurs the intersection of time sampling of the training process with the passage by desired 
reference, in this case the figure approximate to calculate of the error will be one or two triangles instead of a trapeze.    

It's thinking about these improvements and the dependence of proprietary software for the design of fuzzy and PID 
controllers to act in the same process which this paper proposes the construction of an open source environment, able to 
tune PID and fuzzy controllers and able to making the selection and soft switching to the best controller, using as 
comparison metric the integral of the error, the system will be previously trained in a real environment, using the 
algorithm of reinforcement learning Q-Learning with e-greedy policy for decision making . 

As a test scenario will be used a  Quanser ® level system  connected to a server via a power amplifier module UPM 
2405 and a data acquisition board, both Quanser®. This plant is already ready and connected, as well as implementation 
of a service running on this server for communication via socket with the notebook where the proposed system is 
running. 

 
2. Q-LEARNING 

 
According to Sutton and Barto (2002), the reinforcement learning is an approach to artificial intelligence that allows 

an entity to learn from its interaction with the environment, through knowledge about the state of the individual in the 
environment, of their actions within this environment and the state changes that happened after the actions performed. 
An apprentice agent seeks to maximize the performance measure based on receiving reinforcements when interacting 
with the unfamiliar environment. Its use is recommended when there are no models, or when it is not able to get 
appropriate examples of situations which the learner agent will confront. The intelligent agent is an autonomous 
computational entity which acts without the intervention of another system and is never advised of what action to take. 
It aims to learn autonomously an optimal policy of action, through interaction with the environment, through trial and 
error. 

 
Figure 1. Representation of reinforcement learning (Sutton and Barto, 2002). 

 
The main elements of reinforcement learning are: 

� The environment where the agent will act; 

� Policy (π) which represents the behavior that the system will follow to get the goal; 

� Reinforcement ����which is the signal given by the environment to the agent, when an action has been 

made and a state transition has occurred; 

� Return (��) is the sum of reinforcements received over the time; 

� Function of state-action value (Q (s, a)), used to evaluate the quality of the actions taken by the agent, 

representing an estimate of the expected total return 

The purpose of the learning process is to guide the agent to take decisions (actions) which will maximize (or 
minimize) the expected return value. Thus callback function is defined as a sum of reinforcements over time. In simple 
cases, where the environment ends naturally in some specific episode (finite time), the return is given by: 

 
 �� = ���� + ���	 + ���
 + ⋯ + ����                                                                                                                           (1) 
 
But in cases where this happens (t = ∞), the return will also tend to infinity. To solve this, a discount factor is used, 

set in the range 0 ≤ γ ≤ 1 to ensure that the return is finite, i.e.: 
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 �� = ∑ �� ∙ ����������                                                                                                                                                  (2) 
 
To achieve this maximized return value, the agent must follow a given policy (π), which occurs in the mapping of 

states (s) and actions (a) in a value π (s, a) in order to converge to a policy π ^ * (s, a) which leads to solving the 
problem in an optimal way. 

The function of state-action value Q (s, a) is used to evaluate the actions taken by agent in the state �� = � (actual 
state) when a action �� = � is chosen from there by following a policy π any, according the following expression: 

 
����, �� =  �� �∑ �������� + � + 1|  � =  , �� = �!          (3) 
 
To make the agent capable of making the right decisions and choose the most appropriate actions for improving the 

system, we use the algorithm of reinforcement learning Q-learning, one of the most important contributions to the area, 
proposed by Watkins et al. (1992). Among its advantages, one which stands out is the fact that it converges to optimal 
values of Q (s, a) without depending of the policy which is being used, i.e., the action-value function Q directly 
approximates the optimal value function Q * (s, a), through updates of the state-action pairs, which are made when 
these pairs are visited, making thus the Q-learning an off-policy method.  The expression of updating the matrix of Q-
values in Q-learning algorithm based on the action-value function and is denoted by: 

 
��� , �� = ����  , �� � + "[�$�� + � ∙ %�&'������ , ��� − ����  , ���]        (4) 

 
where �� is the actual state, �� is the action realized in the state ��, and  ���� the reinforcement signal  received after 
execute �� in ��, �� + 1 is the next state, γ is the discount factor (0 ≤ γ < 1) and ∝ is the coefficient of learning (0 ≤ ∝< 
1). 

For the convergence of the algorithm is guaranteed, all state-action pair must be visited and updated continuously 
and can be used any policy that ensures that each state-action pair is visited often. A very common strategy is the 
random exploration, ε-greedy, where the agent performs the action according to the random probability ε, i.e.: 

 
where, 

+��� = , �∗,   ./0ℎ 2�34�4/5/06 1 − 7
�'89'�ó$;< ,   ./0ℎ 2�34�4/5/06 7=              (5) 

 
where, 
 

�∗��� = ��>%�& ���, ��                 (6) 
 

To carry out this work, it was decided that states would be admissible values of the error in the tank, from -4 to +4 
volts, discretized with a resolution of 0.2 volts, building a table with 41 discrete states. Thus, the mapping of these states 
is given by: 

 
S(k) = e( k ) *5 + 21                   (7) 

 
where, S (k) is the state e (k) is the error between the desired and measured at the bottom of the tank system at time t. 
 

 In the work proposed by Diniz et al. (2002), the reward is given by minimizing the error using calculating the area 
of the error at time instant k and k +1 being approximated by a trapezoid function, as shown in Figure 2, and whose 
reward function suitable for the trapeze is given by: 
 

�� = |9����9�����|
	 ∙ 0�             (8)

     
being, 
   

?�0� = ��0� − 6�0�              (9) 
 
where r (k) is the reference for the level of tank 2, y (k) the value actually measured for referred tank and ta the decision 
period (verification of switching) whose value adopted for this work was 0,5 seconds. 
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                                               Figure 2. Area delimited by the curve of error (Diniz et. Al., 2010). 
 

But when the moment of decision period (ta) coincides with the passage through the desired reference the 
approximate figure ceases to be a trapeze and becomes two triangles, as shown in Figure 3, whose functions of reward 
to calculate the area of triangles are given by: 
 
|9���|

�@ =  |9�����|
�@@             (10) 

 
0@@ = 0� − 0@            (11) 
 
|9���|

�@ =  |9�����|
�'A�@             (12) 

 
|?�� + 1�| ∗ 0@ = |?���| ∗ 0� − |?���| ∗ 0@         (13) 
 

0@ =  |9���|∗�'
|9�����|�|9���|           (14) 

 
0@@ = 0� − 0@            (15) 
 

B� = �C∗|9���|
	              (16) 

 

B	 = �CC∗|9�����|
	            (17) 

 
B� = B� + B	            (18) 
 
where: 
0@  -> Triangle’s base (time) before cross the set point. 
0@@ -> Triangle’s base (time) after cross the set point. 
0� -> Total sampling period (0,5s). 
B� -> Total area before cross the set point. 
B	 -> Total area after cross the set point 
B� -> Total area calculated. 
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Figure 3: Area delimited by the curve of the error, crossing the reference. 

 
The training consists of the agent's interaction with the environment in a sequence of discrete steps. At each time 

step t, there is a representation of the environment, a state sE (error). Based on the state sE, intelligent agent selects an 
action aE (controller type). As a consequence of the choice of action, the environment is somehow changed, and this 
change is communicated to the agent through a sign of reinforcement (the error minimization function) and the shift to a 
new state sE�� of environment. 

At the beginning of the learning process, the agent has no knowledge of the result of choosing between different 
actions, so he performs various actions and observes the results. 

This interactive process allows the intelligent agent can determine, after a number of trials, the best controller to be 
used in every state. Thus the agent can learn an optimal policy of action that maximizes the estimated expected return 
represented the state-action value function Q (s, a), independent of the initial system.  

It was adopted a ε-greedy policy with 80% chance of choosing the action with the highest estimate. In the first step 
the choice is made randomly. It was also adopted the learning coefficient α=0.15 and the discount factor γ=1. Training 
was performed online, for 70 episodes, with each taking 120 periods of decision (0.5 s). The duration of each episode 
was approximately 1 minute. The decision period is 0.5 s the sampling period of the system is 0.1 s. 

 
3. PROPOSED SOLUTION 

 
The proposed solution is a system developed in Java using the Net Beans IDE version 6.9.1, able to implement PID 

controllers and fuzzy controllers Takagi-Sugeno (Takagi, 1985). These controllers can be graphically tuned through the 
screens of the system. 

The proposed system is also able to decide what the best controller is for different operation regions of the plant, 
using the training algorithm Q-learning, and to check which controller had the lowest error for each sample time (ta). 

For the implementation of soft switch technique among controllers it was adopted a policy of percentages, where 
each cycle read/write of the system, i.e., every 100 milliseconds during the switching of the controllers will be done a 
percentage calculation of the controller signal that was being applied and the signal to be applied It can be seen in Table 
1. 

Table 1: Percentages of the switching process. 
Controller/Time 100 ms 200 ms 300 ms 400 ms 

Controller 1 80 % 60 % 40 % 20 % 
Controller 2 20 % 40 % 60 % 80 % 
 
The system has many screens to configure PID controllers and fuzzy. Next, it is shown and discussed some of the 

screens, that can be seen in figures 4 and 5.   
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The main screen of the system is responsible for showing the real

first graph showing the reference level, and levels of tank 1(top) and 2(lower). The second chart shows the values of 
error and error derivative. Third graph shows the value of controller output to be applied to the plant and the fourth 
graph shows what controller is in execution each instant. The main screen too permits select the desired level, and the 
parameters:  alfa, gama, epsilon and the numbers of episodes to train Q

 
 

 

Figure 4: Main Screen 

The main screen of the system is responsible for showing the real-time graphical simulation of the tank system,  the 
first graph showing the reference level, and levels of tank 1(top) and 2(lower). The second chart shows the values of 

ative. Third graph shows the value of controller output to be applied to the plant and the fourth 
graph shows what controller is in execution each instant. The main screen too permits select the desired level, and the 

he numbers of episodes to train Q-learning algorithm. 

Figure 5: Membership Functions Screen. 
 

 

time graphical simulation of the tank system,  the 
first graph showing the reference level, and levels of tank 1(top) and 2(lower). The second chart shows the values of 

ative. Third graph shows the value of controller output to be applied to the plant and the fourth 
graph shows what controller is in execution each instant. The main screen too permits select the desired level, and the 
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In screen of membership functions we can define the number and parameters of membership functions for input 
variables: Derivative Error and Error. 

 
4. TEST ENVIRONMENT 
 

The chosen test environment uses a system of coupled tanks of Quanser ®, a Power Amplifier Module UPM 2405-
240, a capture card and a level plant (Quanser, 2008) with two coupled tanks, level sensors and a hydraulic pump with 
double direction attached to the upper tank, as can be seen in figure 6. 
 

 
Figure 6: Test Environment. 

 
The need to use the power amplifier module is mainly due to the low current and tension provided by capture board 

in to the server that is not sufficient to feed the tank system pump. The electrical and hydraulic specifications of the tank 
system are shown in Table 2 (Quanser, 2008). 

To establish the communication between the proposed system running on the laptop and the server of the tanks, it 
was used a new Java class incorporated into the system. It enabled communication via socket with the service running 
on the server. 

The communication via sockets or IP: port uses Fast Ethernet network of the lab, something that does not 
compromise the communication with system of tanks, knowing that this communication presents a response time of less 
than 1 ms and sampling rate of the system is 100 ms. 

 The electrical and hydraulic characteristics of tanks are shown in table 2, extracted from the tank manual (Quanser, 
2008). 

 
Table 2: The Electrical and Hydraulic Specifications of Tank System 

Specification Value Unity 
Pump Constant Flow 4.6 cm3/s/V 
Pump Max Flow 100 Cm3/s 
Pump Voltage ±15 V 
Pressure Sensor ±12 V 
Pressure Range 0 ~ 6.89 KPa 
Sensitivity 5 cm/V 

 
 
The power module UPM 2405-240 is capable of providing a continuous voltage of ± 24 volts and a maximum 

current of 5 Amps. Its specifications are shown in Table 3. 
  

Table 3: UPM Power Module 2405-240, Electrical Parameters 
Parameter Value Unity 
Amplifier Voltage Gain 1,3 ou 5 V/V 
Maximum Direct Voltage Amplified ±24 V 
Maximum Direct Current Amplified 5 A 
Direct Voltage of Exit ±12 V 
Maximum Direct Current of Exit 1 A 
Alternate Current Supply 100/120/230/240 V 
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6. RESULTS 
 

The graphs presented in this work were taken from the main screen of the system running on the laptop 
communicating with the server system of tanks via Fast Ethernet network, as shown in Figure 7. 
   

 
Figure 7: Graph Set Point 15 cm 

 
Figure 7 shows the graph for the three controllers working separately, trying to keep a reference level of 15 cm. The 

empirical method was used to tune controllers with the purpose of forcing them to have different signals and to make 
clear how the process of soft switching works. It is better visualized in Figure 8. 
  

 
Figure 8. Graph with controller’s switch. 

 
Figure 8 shows in the first graph the performance of controllers working together to control the same process, trying 

to keep a reference level of 15 cm. Controllers working together, and using the Q-learning algorithm for selecting the 
best one, presented better performance than when separated. Even when compared to the best controller shown in 
Figure 7, the fuzzy one, the proposed switching solution (graph 1 of figure 8) does not present overshoot and also shows 
the smallest oscillatory period. 

The second graph of Figure 8 shows the signal values that each controller is calculating, but also the signal 
calculated in the soft switching. It demonstrates the technique of soft switching between the control signals – it is 
displayed by baby blue line that represents the calculated signal.  
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In the third graph is shown which controller is acting for each instant, becoming clear by observing the figures 7 and 
8 which controller has the smallest steady state error. According to figure 7, it is the fuzzy controller and this is the one 
selected by Q-learning for instants of time greater than 55 seconds.  
 
6.  CONCLUSION 
 

The proposed solution proved to be effective when implementing fuzzy and PID controllers, as can be seen in the 
graphs of Figure 7. It was able to decide what the best controller is to each time instant using the Q-learning algorithm 
and to make the soft switch among controllers, as seen in graph 2 of figure 8. 

The switching solution presented better performance than each controller acting separately. It has minimized the 
settling time, oscillations and system overshoot and takes the best features of each controller. The proposed solution is 
feasible for tuning and making the selection of the best controller to act in the same process. 

The system presented in this paper will be available as open source, so other researchers wishing to use it or 
improve the system will have access to the source code. 
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