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Abstract. This work presents a nonlinear control algorithm to be applied to the trajectory tracking of a pneumatic
positioning system. The objective is to compensate the highly nonlinear effects that are inherent to such systems due to
the dynamic behavior of pressurized air inside the chambers and to friction forces. In order to accomplish this task, the
proposed algorithm employs the feedback linearization control technique, equiped with a friction-compensating scheme
based on a continuous version of the LuGre friction model. A mathematical model of the controlled system that includes
nonlinear friction effects is presented. The proposed controller is described and simulation results are presented in order
to illustrate its main features.
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1. INTRODUCTION

Pneumatic positioning systems are very attractive for many applications because they are cheap, clean, lightweight,
and easy to assemble. Also, they present good ratio between transported load and supplied power, and its operating fluid
(compressed air) is largely available in industrial environments. In spite of these advantages, such systems present highly
nonlinear behavior, so that controlling their operation in high precision applications is a very difficult task. If linear
controllers are employed, for instance, trajectory-tracking performance is highly influenced by the position at which its
approximate models are defined (Virvalo, 1995; Nouri et al., 2000). Thus, the efficiency of a linear controller degrades
rapidly as the range of operation of the system is increased, so that high-precision positioning can only be achieved
for a very small part of the cylinder stroke. Also, these systems suffer from the highly nonlinear behavior associated to
compressiblity effects (Bobrow and McDonell, 2002) and dry-friction forces at near-zero velocities (Guenther et al., 2006;
Khayati et al., 2009). Such undesirable features limit the use of these systems in wide-range positioning applications that
require a fast and precise response, especially when fixed-gain linear controllers are employed.

In order to cope with the difficulties posed by pneumatic systems, many novel control techniques have been proposed.
Most of them are based on nonlinear approaches such as adaptive control (Kaitwanidvilai and Parnichkun, 2005; Zhang
et al., 2007), feedback linearization (Brun et al., 2002; Smaoui et al., 2006), neural networks (Song et al., 2006; Hong
and Yao, 2007) and variable structure control (Pandian et al., 2002; Bone and Ning, 2007). As for the compensation
of friction effects in servomechanisms, the use of model-based control schemes is found to be an effective solution
(Guenther et al., 2006; Jamaludin et al., 2008; Khayati et al., 2009). In this context, the LuGre model (Canudas de Wit
et al., 1995) is employed in several control algorithms (Xie, 2007; Zhang et al., 2008; Khayati et al., 2009). In order to
calculate the net friction force between two contacting surfaces, this model uses a nonlinear first-order state observer that
emulates the average elastic displacement of the bristles that exist on these surfaces in microscopic scale. By means of
such observer, this model is capable of representing many friction phenomena with satisfactory accuracy. Additionally,
the mathematical properties of the LuGre model include invariance and passivity, which are very useful in determining
stability characteristics of controlled systems. Nevertheless, as discussed with more detail in Section 3, application of
friction-compensating schemes bansed on the LuGre model to the specific case of a pneumatic servo system is restricted
by the existence of a discontinuous term in the mathematical structure of the state observer upon which such model is
based. Therefore, a continuous approximation of this model must be used. In Guenther et al. (2006), it is employed a
continuous approximation of the LuGre model, but the important properties of invariance and passivity are not proven to
hold for such approximate model. To overcome this difficulty, a new continuous version of the LuGre friction model was
proposed by Sobczyk (2009), in which such properties are guaranteed to be preserved.

In this work, it is proposed a nonlinear control algorithm based on the feedback linearization technique, aiming at
minimizing the undesirable effects inherent to a pneumatic positioning system due to the nonlinear dynamics of its air
mass flow rates and of friction forces at near-zero velocities. The objective is to cancel such nonlinear effects by means
of a proper linearizing-control action, so that its closed-loop performance characteristics can be determined by employing
linear control design techniques without significant degradation in wide-range positioning tasks. A nonlinear model of
the pneumatic positioning system is presented, including a detailed descripition of the employed approximation of the
LuGre friction model. The proposed controller is described and the convergence properties of the closed-loop system

ABCM Symposium Series in Mechatronics - Vol. 5 
Copyright © 2012 by ABCM

Section II – Control Systems 
Page 252



are outlined. Finally, simulation results are used to illustrate the main characteristics of the closed-loop system when
controlled by means of the proposed algorithm.

This paper is organized as follows: in Section 2, the theoretical model of the pneumatic positioning system is described
without expliciting friction dynamics, which is discussed in Section 3. Section 4 is dedicated to presenting the proposed
control strategy, whereas simulation results are given in Section 5. Finally, the main conclusions drawn from this work
are outlined in Section 6.

2. DYNAMIC MODEL

A typical pneumatic servo system is depicted in Fig. 1. Except for the representation of friction effects, which will
be discussed in Section 3, its mathematical model follows the same approach employed in many different works (see,
for instance, Bobrow and McDonell, 1998, Kazerooni, 2005, or Ning and Bone, 2005). The development of the specific
model that is used in this work is discussed in further detail in Sobczyk and Perondi (2005). Its formulation is based on
the following physical phenomena:

(i) the relationship between the air mass flow rate and the pressure changes in the cylinder chambers, obtained by
energy conservation;

(ii) the equilibrium of the forces acting on the piston, given by Newton’s second law.

(iii) the description of friction forces as the net result of elastic displacements of the asperities that are present on the
contacting surfaces of the cylinder and its internal piston, estimated by means of a continuous approximation of the
LuGre friction model proposed in Sobczyk (2009).

Figure 1. Pneumatic positioning system

Based on energy conservation arguments (Sobczyk and Perondi, 2005), the dynamics of the pressures in the two
chambers of the pneumatic cylinder are given by:

ṗ1 = − Arẏ

V10 +Ay
p1 +

rRT

V10 +Ay
qm1 (1)

ṗ2 =
Arẏ

V20 +A(L− y)
p2 +

rRT

V20 +A(L− y)
qm2 (2)

where r is the ratio between the specific heat values of the air, ẏ is the piston velocity, R is the universal gas constant, T
is the air supply temperature, y is the position of the piston, V10 and V20 are the dead volumes of air in the lines and at the
extremities of both chambers, L is the cylinder stroke, A is the cylinder cross-section area, p1 and p2 are the pressures in
the two chambers, and qm1 = qm1(u, p1) and qm2 = qm2(u, p2) are the mass flow rates of air into or out of each chamber.
Such flow rates are nonlinear functions that depend on the pressures in each chamber, on the supply pressure and on the
control voltage u applied to the servovalve. The behavior of such flow rates is modeled by means of 3rd order polynomial
functions whose coefficients were determined experimentally. The general format of the mathematical expressions that
model these mass flow rates is given by

qm(pi, u) = [qm]maxfp(pi)fu(u) (3)

where [qm]max is the maximum absolute value of air mass flow through the valve, fp(pi) is a 3rd order polynomial in
terms of the pressure inside the considered chamber (1 or 2), and fu(u) is another 3rd order polynomial that depends
on the control signal that is applied to the servovalve. These polynomial functions were determined experimentally by
evaluating the dependence on each variable (pi and u) while each of the chambers was first filled and then exhausted.
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Therefore, eight polynomial functions are employed (four that depend on the control signal plus four that model the effect
of the pressures in the chambers), with two of them being combined for each chamber in a given instant according to the
process that is occurring. The complete set of polynomial functions and the experimental procedure that was employed
for determining them are described in Perondi (2002).

The dynamics of the strictly mechanical part of the system is modeled by applying Newton’s second law directly on
the piston-load assembly, resulting

Mÿ + σ2ẏ + F = A(p1 − p2) (4)

where M is the mass of the piston-load assembly σ2 is the viscous friction coefficient, and F is the dry-friction force.
Accompanied by the eight polynomial fucntions that are employed in Eq.(3), equations (1), (2) and (4) represent the

fourth-order nonlinear model of a pneumatic positioning system without expliciting the dynamics of dry-friction effects.
As the piston is moved due to the difference of pressure between the two chambers, it is convenient to rewrite these
equations in terms of a differential pressure p∆ = p1 − p2. Thus, subtracting Equations (1) and (2), one obtains:

ṗ∆ = ĥ(p1, p2, y, ẏ) + û(p1, p2, u, y) (5)

where ĥ(p1, p2, y, ẏ) and û(p1, p2, u, y) represent the grouped terms that are functions only of the states of the system and
those that are affected by the input voltage u, respectively. Such grouped terms are defined as:

û(p1, p2, u, y) = RrT

(
qm1(u, p1)

V10 +Ay
− qm2(u, p2)

V20 +A(L− y)

)
(6)

ĥ(p1, p2, y, ẏ) = −rAẏ
(

p1

V10 +Ay
− p2

V20 +A(L− y)

)
(7)

As it can be observed from equations (4) and (5), the control action that is applied to the system affects only the time
derivative ṗ∆ of the differential pressure that is responsible for positioning the piston-load assembly. Therefore, in order
to employ the proposed control scheme that will be discussed in Section 4, it is necessary to rewrite the equations that
model the dynamics of the system so that the dependence of its translational states (y, ẏ and ÿ) on the control action can
be written in an explicit way. This can be carried out by deriving Eq.(4) and substituting Eq.(5) into the resulting function,
obtaining:

...
y = −σ2

M
ÿ +

A

M
(û+ ĥ) (8)

3. FRICTION MODEL

In this work, it is employed a continuous version of the The LuGre model to represent the effects of dry friction
forces in the pneumatic servo actuator. This model is well known in control literature and its most important features
are discussed in detail in Canudas de Wit et al. (1995) and Barabanov and Ortega (2000), among other works. Its
representation of friction effects is based on the interaction between two contacting surfaces in microscopic scale. In this
context, the surfaces are rough, and the complex nature of friction is determined by the relationship between the asperities
of these surfaces. Mathematically, this relationship is modeled by means of the elastic deformations of microscopic
elements (bristles). Such deformations are represented by an average deflection z, which is treated as an internal state of
the system. As this state is not directly measurable, it must be observed by means of a suitable algorithm. Using this state,
the dry-friction force F acting on two bodies presenting relative motion can be written as:

F = σ0z + σ1ż (9)

where σ0 is a stiffness coefficient and σ1 is a damping coefficient related to the time derivative of z. In its original form,
the state observer that describes the dynamics of z is given by:

ż = ẏ −
˙|y|

f (ẏ)
z (10)

where f (ẏ) is defined as (Canudas de Wit et al., 1995)

f (ẏ) =
1

σ0

[
FC + (FS − FC) e−(ẏ/ẏS)2

]
(11)
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where FC is the Coulomb friction force, FS is the static friction force, and ẏS is the Stribeck velocity.
One of the most important features of the LuGre model lies in its capability of representing with satisfactory accuracy

many nonlinear effects that are inherent to dry friction, such as varying break-away forces, stick-slip motion and hysteresis
(Xie, 2007; Astrom and Canudas de Wit, 2008). Also, it allows the prediction of undesirable effects that could arise in
closed-loop systems due to friction, such as limit cycles. Furthermore, this model presents three analytical properties that
are of special importance in the context of control systems: (i) the internal state z(t) is limited (Canudas de Wit et al.,
1995); (ii) the model defines a passive mapping when the system input is given in terms of velocity and the output is the
internal state z(t) (Canudas de Wit et al., 1995); (iii) with a proper choice of the values of its parameters, the model is
passive with respect to a velocity input and an output in the form of friction force (Barabanov and Ortega, 2000). These
properties are relevant to the synthesis of control algorithms that include friction compensation schemes because they are
useful in ensuring the stability of the closed-loop plant (Janiec, 2004; Guenther et al., 2006; Khayati et al., 2009).

Despite its usefulness as a tool for developing friction-compensating control algorithms, there are important difficulties
that arise from the use of the LuGre model in the case of pneumatic positioning system that is studied in this work.
Specifically, these difficulties occur because there is a dynamic relationship between the control signal u applied to
the servovalve and the corresponding control action p∆ that is responsible for the actual movement of the piston-load
assembly. In this case, as indicated in Eq. (8), the time derivative Ḟ of the friction force must be explicitly known.
According to expressions (9) and (10), the original LuGre model represents friction forces in a way that depends directly
on ż (t), which is a function of |ẏ|, whose time derivative is discontinuous in ẏ = 0. Thus, z̈ (t) does not exist at this
point, and the time derivative of the estimated friction force cannot be represented by means of a continuous function
for all operating conditions of the controlled system. Therefore, as already pointed out in Makkar et al. (2005) and
also in Guenther et al. (2006), the use of this model in its original form is not possible in the case of this class of
systems, and a continuous approximation must be employed. One such approximation was used in Guenther et al. (2006)
with satisfactory practical results. However, it has not been proven that such approximation is guaranteed to preserve
the aforementioned analytical properties possessed by the original model. As these properties have expressive physical
meanings and play important roles in ensuring the stability of the controlled system, this problem can be a severe hindrance
to the utilization of such a modified model as part of a control algorithm. If the model is actually not passive, for instance,
it may cause the control signal applied to the plant to be excessively large, leading to equally large tracking errors or even
operation accidents.

In order to develop a continuous approximation of the LuGre model and still keep the most important analytical
properties given by its original form, it was proposed in Sobczyk (2009) that Eq. (10) should be modified as follows:

ż = ẏS1 (ẏ)− S2 (ẏ)

f (ẏ)
z (12)

where S1 (ẏ) and S2 (ẏ) are defined with the aid of an auxiliary function S0 (ẏ). These new terms are given by:
S0 (ẏ) = 2

π arctan (kv ẏ)

S1 (ẏ) = [S0 (ẏ)]
2

S2 (ẏ) = ẏS0 (ẏ)
(13)

By analyzing Eq. (12), and its auxiliary functions, it is observed that the structure of the proposed approximation tends
to the original observer given in Eq. (10) as the value of kv is increased. Thus, provided that kv is chosen to be sufficiently
large, the numerical predictions made by means of this newly proposed approximation can be made very similar to those
obtained by using the original LuGre model. In Sobczyk et al. (2009), simulation studies are presented regarding the
value of kv that is necessary for achieving such good approximations. In the same work, it is concluded that such value is
of the order of 107[s/m] or greater.

As this approximation can be proven to retain all three analytical properties of interest (see Sobczyk, 2009, for details),
its use with an appropriate value of kv allows the application of the LuGre model to the case in study. However, in order
to accomplish this task, it is still necessary to obtain the explicit formulation of the time derivative Ḟ of the dry-friction
force that is present in the system (see Eq. (8)). This is carried out by deriving Eq. (9) with respect to time, obtaining:

Ḟ = σ0ż + σ1z̈ (14)

The term z̈ employed in this expression can be calculated by taking the time derivative of Eq. (12):

z̈ = Ṡ1ẏ + S1ÿ − (ġz + gż) (15)

where g (ẏ) = S2 (ẏ) /f (ẏ). The derivatives of the intermediate terms involved in this equation are given by the following
expressions:

Ṡ1 = 2S0Ṡ0 (16)
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Ṡ0 =
2kv

π [1 + (kv ẏ)2]
ÿ (17)

ġ =
Ṡ2f − S2ḟ

f2(ẏ)
(18)

Ṡ2 = Ṡ0ẏ + S0ÿ (19)

ḟ =
−2 (Fs − Fc)

σ0v2
s

ẏÿe−(ẏ/vs)2 (20)

4. CONTROL ALGORITHM

The proposed controller employs a feedback linearization technique in association with a linear control law that em-
ploys the position, velocity and acceleration of the piston as state variables. This approach aims at cancelling the nonlinear
effects that derive from the dynamics of dry-friction forces and of the pressures in the two chambers as they are filled or
exhausted, so that the desired dynamic behavior of the system can be entirely defined by means of standard pole-placement
considerations. In order to establish the proposed control law, it is necessary to define the trajectory tracking errors of the
controlled system as:

ỹ = y − yd
˙̃y = ẏ − ẏd
¨̃y = ÿ − ÿd...
ỹ =

...
y −

...
y d

(21)

where y, ẏ, ÿ and
...
y are the position, velocity, acceleration and jerk of the piston, respectively, yd, ẏd, ÿd, and

...
y d are the

correspondingly desired values for the same variables. Using this definition, the proposed control law is given by

û = α− β (22)

where α is the linear part of the proposed controller and β is the feedback linearization term. These two functions are
defined as follows:

α =
M

A

(
− k1ỹ − k2

˙̃y − k3
¨̃y +

...
y d +

σ2

M
ÿ

)
(23)

where α is the linear part of the proposed controller and β is the feedback linearization term. These two functions are
defined as follows:

β = ĥ+
˙̂
F (24)

In Eq. (23), k1, k2 and k3 are the feedback gains, whose values will be determined in Section 5. In the case of
Eq. (24), ĥ is the same term given in Eq. (6). Its purpose is to cancel the nonlinear effects of the controlled system due
to the dynamics of compressed air inside of the actuator cylinder, whereas ˙̂

F is an estimate of the time derivative of the
dry-friction forces acting on the piston-load assembly. This estimate is obtained by means of a state observer that has the
same structure of the friction model described in Section 3, that is:

˙̂
F = σ0

˙̂z + σ1
¨̂z (25)

˙̂z = ẏS1 (ẏ)− S2 (ẏ)

f (ẏ)
ẑ (26)

¨̂z = Ṡ1ẏ + S1ÿ − (ġẑ + g ˙̂z) (27)
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where ẑ, ˙̂z and ¨̂z are the observed counterparts of z, ż and z̈, respectively.
Assuming that all parameters of the system are exactly known, the nonlinear effects due to the term ĥ (Eq. (6)) are

entirely cancelled. Thus, substitution of Eq. (22) into Eq. (8) yields
...
ỹ = −k1ỹ − k2

˙̃y − k3
¨̃y + ˙̃F (28)

In Eq. (28), ˙̃F stands for the residue of the attempt of cancelling the term Ḟ by means of its observed conterpart ˙̂
F . As

it can be observed from the same expression, if ˙̃F is suficiently small so that its influence can be neglected, the dynamics
of the controlled system in state-space form can be approximated by

ẋ = Amx (29)

with Am and x defined as

Am =

 0 1 0
0 0 1
−k1 −k2 −k3

 ,x =

 ỹ
˙̃y
¨̃y

 (30)

Thus, the dynamic behavior of the trajectory tracking errors of the system is entirely specified by the roots of the char-
acteristic equation associated to the matrix Am, and such behavior can be adjusted as desired by suitably choosing the
values of the feedback gains k1, k2 and k3.

Remark #1: To this moment, a complete stability analysis of the closed-loop pneumatic servo actuator when the
proposed controller is employed is not available. However, due to the characteristics presented by the friction model in
study, it is possible to infer some preliminary conclusions regarding the convergence properties of the trajectory-tracking
errors for this system. In particular, because the internal state z that characterizes the friction model is limited, it can be
shown that the dry-friction force F and its derivative Ḟ are both limited. Thus, by employing a pair of definite positive,
symmetrical matrices P and Q that satisfy Lyapunov’s relation ATP + PA = −Q, combined with the non-negative
function V (t) = xPxT , it can be proven that the vector of closed-loop trajectory-tracking errors x = [ỹ ˙̃y ¨̃y]T for this
system is restricted to a region around the origin of its state space that is given by

‖ x ‖≤ 2λmax(P)

λmin(Q)
Γ (31)

where λmin(Q) is the minimum eigenvalue of Q, λmax(P) is the maximum eigenvalue of P, and Γ is an upper bound

for the residue ˙̃F from an imperfect cancellation of friction effects. The process for obtaining such limit is completely
developed in Perondi et al. (2010), for the closely related case of an imperfect cancellation of the term ĥ that models the
nonlinear dynamics of the pressures in the chambers of the actuating cylinder.

Remark #2: It is important to observe that the control law û defined in Eq. (22) does not represent the input signal u
that is actually applied to the servovalve. As seen in Eq. (7), these two variables are related one to each other by means
of a nonlinear equation that depends on the values of the air mass flow rates across the orifices of the valve. Thus, once
a desired value û is calculated, it is necessary to obtain the corresponding input voltage u to be applied to the servovalve
by means of a proper inversion process. In order to execute such operation, it is necessary the knowledge of the auxiliary
3rd order polynomial functions, as mentioned in Section 2. This process is summarized in Fig. 2, and the complete set of
instructions in order to perform it can be found in Perondi (2002).

5. SIMULATION RESULTS

In the simulations, the system was required to track a sinusoidal trajectory with frequency 2 [rad/s] and amplitude 450
[mm], originated at the center of the pneumatic cylinder. The values of all necessary parameters of the controlled system
were taken from a real pneumatic workbench, as described in Perondi (2002): A = 4.19 · 10−4 [m2], r = 1.4, R = 286.9
[Jkg/K], T = 293.15 [K], L = 1 [m], V10 = 1.96 · 10−6 [m3], V20 = 4.91 · 10−6 [m3] and M = 3.66 [kg]. Simulations
were carried out by means of a Matlab/Simulink package, using the Runge-Kutta integration method with a time step of
1 · 10−4 [s]. In order to keep the simulation conditions as close as possible to those of an experimental evaluation of the
proposed controller, the simulated model includes a set of low-pass filters that are similar to those to be encountered in the
instrumentation apparatus of the real system. These filters are all of the Butterworth type, 2nd order, with the following
cutoff frequencies: 350 [rad/s] for the position signal, 60 [rad/s] for the velocity signal and 40 [rad/s] for the acceleration
signal.
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Figure 2. Proposed control scheme

The performance of the pneumatic positioning system was evaluated for three different control algorithms, defined as
follows:

(i) the proposed feedback linearization controller, denominated FL-DF (Feedback Linearization with Dry-Friction
compensation);

(ii) a simpler version of the proposed algorithm, in which only the nonlinear dynamics of the pressures in the chambers
are compensated, named as FL-PD (Feedback Linearization with Pressure Dynamics compensation);

(iii) a classical linear state-feedback control law, based on the signals of Position, Velocity and Acceleration, commonly
known as PVA controller.

The first control algorithm is described by means of Eq. (22) with all the auxiliary definitions given in Section 4. The
second controller is obtained by setting ˙̂

F ≡ 0 in the linearizing part β of the proposed control law (see Eq. (24)). A
detailed discussion about this algorithm can be found in Perondi et al. (2010). The third control law is a standard linear
full-state-feedback controller, defined as:

u = −kpỹ − kv ˙̃y − ka ¨̃y (32)

For the nonlinear controllers, the values of the gains employed in the linear parcel α (Eq. (23)) were determined by
means of pole-placement considerations, in which the desired dynamic behavior was designed to resemble that of a 2nd-
order system with settling time of 0,6 [s] and maximum allowed overshoot of 2%. Since the error dynamics of the system
is of 3rd order (see Eq. (29)), in order to approximate such behavior, the third pole was placed 8 times further from the
origin than the real part of the dominant complex-conjugate poles that correspond to the desired dynamics. Also, as the
error dynamics is expressed in the canonical form, the values of the gains are equal to the corresponding coefficients of
the characteristic equation that satisfies the desired dynamic behavior. Thus, the gains of the linear part of the FL-PD and
FL-DF controllers are: k1 = 3, 9 · 103, k2 = 784, 22 and k3 = 66, 67. The gains of the PVA controller were defined
so as to make the system present the same dynamic behavior that was specified for the case of the nonlinear algorithms.
In this case, however, the values of the gains must be obtained by employing a linearized model of the system. Such
approximate model was defined by linearizing the state equations presented in Section 2 in the central position of the
pneumatic cylinder. The resulting linear model can be conveniently represented by the following transfer function:

Y (s)

U(s)
=

b0
s(s+ a2s+ a1)

(33)

where s is the Laplace variable, b0 = 617.69, a1 = 325.54 and a2 = 19.13. The values of the corresponding gains of the
PVA controller are kp = 6, 31, kv = 1, 76 and ka = 0, 14.

The results obtained in the simulations can be observed in figures 3 and 4. In both cases, part (a) is devoted to pre-
senting the entire trajectories, whereas part (b) illustrates the corresponding tracking errors. It can be observed that, when
compared to the classical PVA controller that was developed to fulfill the same performance requirements, the proposed
controller yields significant reduction of the tracking errors both with and without the dedicated friction-cancelling term.

Even though it allows a more significant reduction of the tracking errors, the presence of the friction-cancelling term
in the proposed control law causes system response to become less smooth. This effect is noticed especially at the
extremities of the cylinder, when the velocity response presents sharp variations. As it can be verified in Fig. 5, this
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Figure 3. Simulation results - position tracking

Figure 4. Simulation results - velocity tracking

effect occurs because the friction force calculated by means of the proposed observer suffers from the delays caused
by the filters in the signal chain of the monitored variables. If the filters are removed, the errors in the compensation
of friction effects become very small, and the resulting trajectory-tracking errors are significantly reduced. This fact is
confirmed by the results presented in Tab. 1: when no filters are employed, the FL-DF controller yields a reduction of
about 44% in the RMS value of postion tracking errors; when the filters are present, the value of such reduction falls
to 29%. In the case of the PVA controller, the resulting errors are almost insensitive to the presence of the filters.This
indicates that the proposed controller tends to be more difficult to implement in an experimental system, especially if its
friction-compensating capabilities are to be employed. Thus, in order to be fully explored in terms of its potential benefits,
the practical utilization of the proposed controller may require the development of alternative noise-cancelling techniques,
such as state observers or more elaborate filtering algorithms.

Table 1. RMS values - position tracking errors

Filters RMS error per controller [mm]
PVA FL-PD FL-DF

on 17,82 8,01 5,69
off 17,70 6,11 3,38
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Figure 5. Friction compensation - effect of filters

6. CONCLUSIONS

In this work, a novel control algorithm to be applied to a pneumatic positioning system was proposed, aiming at
compensating the undesired nonlinear effects due to the dynamics both of pressurized air and dry-friction forces. The
most important features of the proposed controller were discussed and illustrated by means of simulation results. It was
observed that the proposed algorithm allows significant reductions in the amplitude of the trajectory-tracking errors of
the controlled system when compared to a classical control approach. However, the proposed control law is also more
sensitive to the effect of delays due to the filtering of measured signals, a feature that might limit its utility in the case of
practical applications.

Future work will focus on the development of a complete stability analysis of the controlled system and on the exper-
imental evaluation of the proposed algorithm.
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