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Abstract. It is quite common in flexible structures analysis the needs of attenuating vibration to desired levels or even 
to eliminate them. To achieve this goal, there are three control techniques: the passive, the active and the semi-passive 
control. Active control uses external actuators, controlled by a loop in real time to eliminate or mitigate the forces 
responsible for these vibrations. However for this technique to provide satisfactory results, there are several factors to 
take into consideration, among them the type of actuator and sensor being used and the type of controller. There are 
many studies related to this issue and one of them is the use of a piezoelectric material, which acts both as sensors and 
actuators. These materials have some advantages like the little added weight to the structure, associated to good 
performance. Most flexible structures are distributed parameter systems and therefore, problems with infinite 
dimensions are not practical for control design, so some mathematical techniques are used to bring such systems to 
finite dimensions, and one of the most used is the Finite Element Method. This paper proposes to model an Euler-
Bernoulli cantilever beam and incorporate the piezoelectric sensors and actuators dynamics, using the Finite Element 
Method. It will be developed a control design, both in time and in frequency domains in order to compare the results 
obtained by both approaches. 
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1. INTRODUCTION 
 

Currently, due to the demands of quality and performance on the market, it becomes necessary the use of efficient 
equipments and structures as well low-cost manufacturing, maintenance and operation. Accordingly, various researches 
are focused on developing techniques for active vibration control. This technique use external actuators, in real time 
control loop, which act to eliminate or to reduce the forces responsible for the undesirable vibrations. The active control 
main idea is presented in Figure 1 

 

 
 

Figure 1: Active control scheme. 
 
However, for this technique to show satisfactory results, there are several factors to be considered, among them the 

type of actuator and sensor used as well the type of controller. Thus there are many researches related to this issues and 
one of them concerns piezoelectric material, which acts both as sensor or actuator. Some advantages of these materials 
are the low weight added to the structure, combined to the fast response. 

Most flexible structures are distributed parameters systems and these infinite-dimension problems are not practical 
for control design, so some mathematical techniques are used to bring these systems to finite dimensions and one of the 
most used is the Finite Element Method. 

This paper proposes to model an Euler-Bernoulli cantilever beam as well to incorporate the piezoelectric sensors and 
actuators dynamics using the Finite Element Method. Afterwards it will be developed a control design, both in the time 
and in the frequency domains in order to compare the results obtained by them. 
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2. DYNAMICS OF EULER-BERNOULLI BEAM AND MODAL ANALISYS 
 

The Finite Element Method is a numerical procedure for solving physical problems governed by a differential 
equation or an energy theorem. It has two characteristics that distinguish it from the other numerical procedures: a) 
utilizes an integral formulation to generate a system of algebraic equations and b) uses continuous piecewise smooth 
functions for approximating the unknown quantity or quantities (SEGERLIND, 1984). 

The Euler-Bernoulli beam equation is represented by; 
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Where ( )txv ,  is the beam transversal displacement, ρ  is the mass density per volume, E  is the Young 

Modulus, I is the Inertia Moment and ( )txq ,  is the external applied load. 

It was considered the typical beam finite element with two nodes and two degrees of freedom per node, as shown in 
Figure 2 below. 
 

 
 

Figure 2: Beam finite element 
 

The spring-mass system motion equation without damping can be written as: 
 

[ ]{ } [ ]{ } { }FdKdM =+&&  (2) 

 
Where, 
 

[ ]M = mass matrix 

[ ]K = stiffness matrix 

{ }F = load vector 

{ }d = displacement vector 

 
To determinate the system eigenfrequencies, the applied load shall be done equal to zero. 

 

[ ]{ } [ ]{ } 0=+ dKdM &&  (3) 

 
Whereas the free vibration movement is a simple harmonic, the solution can be of the type; 

 

( ) )sin( tDtd ω=  (4) 

 
And, finally, substituting (4) in (3), it is possible to write; 

 

[ ] [ ][ ]{ } 02 =− dMK ω  (5) 
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Last equation represents a problem of eigenvalue or characteristic value. The amount of 
2ω  are eigenvalues or 

characteristic values indicating the square root of the natural frequencies, while the corresponding values of vector d̂  

indicates the vibrating system shapes (eigenvectors). 
 
3. PIEZOELECTRIC TRANSDUCERS DYNAMICS 
 

The piezoelectric effect was studied in 1880 in quartz crystals, by Pierre and Jacques Curie. This effect consists 
basically on materials geometrical deformation when they are subjected to an electric field and conversely, they produce 
electric polarization in response to mechanical stresses. Some of the most used materials that exhibit such property are 
the PZT ceramics (Piezoelectric Transducer) and plastic films PVDF (Polyvinylidene Fluoride). 

The PZTs are made basically by lead oxide, zirconium and titanium and by having a large stiffness they are 
indicated to be used as actuators. On the other hand PVDFs are robust and flexible polymers which can be produced in 
complex geometries; they are flexible and have little weight. For such characteristics, they are suited for distributed 
sensoring. 

The piezoelectric effect has a linear dependence between induced strain and applied electric field. So if the electric 
field direction is reversed, the deformation direction will be also reversed. 

These materials generally show a good linearity in the ratio between the applied electric field and induced strain, but 
when they are subjected to an electric field with high intensity the polarization saturation phenomenon occurs and 
causes the electric dipoles inversion leading to a significant hysteresis and nonlinear ratios between electric field and 
induced strain. Another behavior that should be observed in the use of piezoelectric materials is that the temperature 
should not exceed a threshold value, named Curie temperature, from which there is a spontaneous material 
depolarization and loss of piezoelectric characteristics. But at temperatures below the Curie temperature, these materials 
show a relative insensitivity with respect to temperature variation. 
 
3.1. Euler-Bernoulli beam element electromechanically coupled 
 

In the electromechanical coupling, the structural element has three degrees of freedom per node, two mechanical 
(one linear vi and one angular Өi displacements) and one related to electric potential φi. 
 

 

 
 

Figure 3: Beam finite element electromechanically coupled. 
 
3.2. Coupled electromechanical structure model 
 

The finite element method basic idea is to use the variables as parameters for a nodal finite number of points 

previously chosen. Performing this procedure, the displacements d  can be written as elements function using the nodal 
interpolation functions. This relation is expressed as follows below; 
 

id dNd =  (6) 

 
where, 
 

dN = interpolation function (shape function) 

id = displacement at node i 
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Besides the displacements it is also necessary to consider as nodal variable the electrical potential, ϕ . Analogously 

we can write it as; 
 

iN ϕϕ ϕ=  (7) 

 
where, 
 

ϕN = interpolation function (shape function) 

iϕ = electrical potential at node i 

 
To find the piezostructure motion equation, it was used Lagrange's equation. This formulation considers mechanical 

degrees of freedom, which describe the movement in each structural element defined by d  and the electrical degrees of 
freedom ϕ  defined by the electrical potential. Thus Lagrange's equation is defined by; 
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with 
 

F = external forces applied 

Q = induced electric charge 

L  = Lagrangian defined as  
 

eWUTL +−=  (10) 

 
where, 
 

T = kinetics energy 

U = potential energy 

eW = work of electrical potential 

 
Af ter mathematical manipulation, the final overall motion equation for a coupled electromechanical structure is 

defined by: 
 

QKKFKddDdM d
1−−=++ ϕϕϕ

&&&  (11) 

 
where, 

M = mass matrix 

D = damping matrix 

K = stiffness matrix 

ϕdK = electromechanical coupling matrix 

ϕϕK = piezoelectrical capacitance matrix 

ABCM Symposium Series in Mechatronics - Vol. 5 
Copyright © 2012 by ABCM

Section II – Control Systems 
Page 169



  

4. PIEZO-STRUCTURE CONTROL 
 

The control theory has two basic strands: the frequency domain (classical control) and time domain (modern 
control). In modern control theory, dynamic models are represented in the frequency domain by transfer function that 
characterizes the ratio between system input and output, i.e. the system transfer function is represented by time invariant 
linear differential equations defined as the ratio between the output and input signals Laplace transform. 

The modern control theory is based on the dynamic systems description by means of n first order differential 
equations that can be combined in a vector-matrix differential equation of first order (PALMA, 2007). The modern 
control techniques allow the systems design with single input and single output (SISO) and multivariable systems, 
multiple input and multiple output (MIMO) as easily, i.e. increasing the number of state variables does not increase the 
equations complexity. 
 
4.1. State observer 
 

A control system with state feedback can not be done when some system variable is not available for measurement, 
unless this variable is estimated. When a computer or other device estimates this variable, it is named the state observer 
or simply an observer. The state observer is a mathematical model used to construct a physical system based on the 
sensor (OGATA, 2003). For a control system with state feedback, which was used in this work, we can use the 
estimated states as the feedback system. 

The procedure is described as follows: The observer compares the output value of the real system with the observer 
and the output is fed back to a gain L. The estimated states are used to provide the system with a real gain K. To 
determine the gains value there are several methods, in particular in this paper we use the Linear Quadratic Regulator, 
which was originated from the theory of optimal control. This theory basic idea is to obtain a performance function and 
design a control law to minimize the first. 
 
5. RESULTS 
 
In order to simulate the subjects above exposed it was chosen a beam according to the Figure 4 below. 
 

 
 

Figure 4: Beam model used in the simulation 
 

The material properties as well the beam geometry are presented in the Table 1. The damping matrix D  is proportional 
to the mass and stiffness matrices, and the constants used were α = 0.001 and β = 0.0003 for the relation 

KMD βα +=  

 
Table 1: Beam data used in simulation 

 
Young Modulus (MPa) 70000 

Poisson ratio 0.3 
Mass density (kg/ m³) 2710  

Length (mm) 300 
Width (mm) 20 
Height (mm) 5 

 
It was analyzed the first four eigenmodes using the Finite Element Method theory developed in this work whose 

results were compared to a commercial FEM software. The results are shown in the Table 2 as follow.  
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Table 2: First four eigenfrequencies 
 

 
Eigenvalues 

Eigenfrequencies (Hz) 
FEM – this work FEM – commercial 

software 
Error (%) 

1° 9.0626  9.0477  0.164683  
2° 56.7946  56.7629  0.055846  
3° 159.0337  158.4179  0.388719  
4° 311.6973  309.4849  0.714865  

 
 

In possession of these data it was plotted the first four eigenmodes based on the values calculated above. These plots 
were done both by the theory developed in this work, Figure 5, and also by a commercial FEM software, Figure 6. 
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Figure 5: First four eigenmodes – this work 
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Figure 6: First four eigenmodes – commercial FEM software 
 
 

As can be seen, for the structure eigenfrequencies and eigenmodes, the model developed in this work showed good 
results and can be considered to progress the analysis. 

The next step was to model the piezo-structures using the geometrical and electrical physical properties described in 
Table 3 
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Table 3: Piezoelctric data used in the simulation 
 

Young Modulus (MPa) 62000 
Elasticity constant (MPa) 92.3e3 

Piezoelectric voltage coefficient (C/mm²) -1,63E-05 
Dielectric Constant (F/mm) 3,36E-11 

Mass density (kg/ m³) 7.5e-6 
Length (mm) 20 
Width (mm) 20 
Height (mm) 0.26 

 
 

This work used two actuators (one for control input and other for disturb) and one sensor. No special technique was 
used to define the sensor/actuators placement, but some candidate positions and finally chosen those with less 
interference to the eigenfrequencies as shown in Figure 7 (BUENO, 2007). The structure for the electromechanical 
coupling was divided into 15 elements and the PZTs length is equivalent to one element. 
 
 

 
 

Figure 7: Sensor and actuators positions on the beam 
 
 

Since the sensor and actuators positions have been defined the new eigenfrequencies were calculated and compared 
with those obtained previously without PZTs. These values are shown in the Table 4. 
 
 

Table 4: First four eigenfrequencies with and without PZT 
 

 
Eigenvalues 

Eigenfrequencies (Hz) 
without PZT with PZT 

1° 9,0626  9,3670  
2° 56,7946  56,1671  
3° 159,0337  158,0544  
4° 311,6973  311,6873  

 
An impulsive input was used to excite the system and the system frequency response function was obtained. Only 

the first five eigenmodes was considered in the simulated system. The frequency response function for the system with 
and without controller is presented below in Figure 8. 
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Figure 8: Frequency response function for the system with and without controller. 
 
 

According to the figure above, greatest attenuation occurred in first three eigenmodes, which was the initial propose 
for the control design. 

The system response with and without control for the same impulse input in the time domain can be seen in the 
Figure 9. 
 
 

 
 

Figure 9: Time domain response for the system with and without controller. 
 
 

The first three eigenmodes particular behavior can be seen in the Figure 10, considering the impulsive input and 
comparing the controlled (red line) and non-controlled (blue or black line) system, both in time and frequency domain. 
This is possible because the system was modeled in modal coordinates and placed in canonical form after a linear 
transformation, where each diagonal element represents one eigenmode. 
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First mode - time domain First mode - frequency domain 

 
 

Second mode - time domain Second mode - frequency domain 

  
Third mode - time domain Third mode - frequency domain 

 
Figure 10: Eigenmodes in time and frequency domain with and without controller. 

 
 

For examining the graphics in Figure 10 for the individual modes, it is possible to conclude that the greatest 
attenuation occurred in the first mode and the lowest occurred in the third. It has been proposed for control design, once 
the first mode is the one with higher amplitude. 
 
 
5. CONCLUSIONS 
 

This paper presented a flexible structure analytical modeling procedure and a vibration active control, considering 
sensors and actuators coupling. The system matrices were obtained by the finite element method and their validation 
were obtained using commercial FEM software. Sensors and actuators model have also been obtained by finite element 
method becoming easier their incorporation in the structure. It was applied a linear transformation to the 
electromechanical coupled structure model which allowed to work with the modes separately. This transformation 
became easier the control implementation since it was possible to reduce the system model, working only with the 
interested modes. It decreased the order system and reduced the computational cost. 

It was used an optimal control technique, in particular the linear quadratic regulation to determine the controller 
gain, and an estimator based on Kalman filter, which is an excellent observer in the presence of white noise and has 
guaranteed stability margin. These methods advantage is related to robustness, since they can be used for more complex 
structures only performing some modifications. On the other hand, to determine these method parameters is not trivial, 
because it is commonly used trial and error. In general, the controller designed was efficient, with respect to the 
proposed objectives in the simulations with the analytical model. The problem related to the sensor and actuators proper 
positioning was neglected here but it is known that it interferes on the system stability as well its controllability. 
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