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Abstract. This paper concerns the identification and vibration control of a flexible structure. A state-space model of the 
system is used in the implementation of a digital controller to control the first two modes of a cantilever beam. To 
determine the parameters for the model of such a system, the Eigensystem Realization Algorithm (ERA) is often used, 
However, this was developed for an impulsive input, and here white noise was used for system identification. Thus, a 
variation of this algorithm called Observer/Kalman Filter Identification (OKID) was used instead. This incorporates a 
state observer, which means that the system can be identified for any input. The system identification procedure is 
outlined in some detail. The control system was implemented in real time on an aluminium cantilever beam, which had 
a PZT patch bonded to it as an actuator and a co-located PVDF patch which was used as the sensor. It was shown 
experimentally that such a control system, coupled with the actuators and sensors, is capable of increasing the 
damping ratio of the first mode of vibration of a cantilever beam by an order of magnitude, when it is subject to 
impulsive excitation.         
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1. INTRODUCTION 
 

The accuracy of the mathematical models of dynamic systems is essential for the success of modern control laws. 
Several methodologies are available to identify the mathematical representation of a physical structure or phenomenon. 
Among these methodologies, the Eigensystem Realization Algorithm (ERA), Juang et al. (1985), and its derivative 
ERA/OKID (Observer/Kalman Filter Identification), Juang et al. 1993, belong to the category of black box 
identification, where the model of a system is identified through experimental data.  

The identification process, such as the least square method (Gauss, 1809), has been studied by many researchers. In 
the twentieth century (mostly since 1965), the focus has been on building models to be applied in control problems. In 
1965, two influential papers were published, (Ho and Kalman, 1965) that led to the subspace identification method and 
(Åström-Bohlin, 1965) that led to the Prediction Error methods, (Gevers, 2006). The ERA belongs to the subspace 
identification class and is based on realization theory, that is, the computation of the triplet [AAAA, BBBB, CCCC] , which correspond 
to the state matrix, the input matrix, and the output matrix respectively. They are obtained from measured data, in this 
case, the impulse response function (IRF), from which the Markov parameters can be determined. The ERA can only be 
used if the IRF is known, and sometimes this is not the case. With the OKID method, the ERA can be used with other 
signals (Juang et al. 1993). This identification method uses a state observer in the process allowing the Markov 
parameters to be obtained through the response of a signal that is easy to generate, for example white noise, which is the 
case in this paper. Here, a state-space model of a cantilever beam is generated using the OKID method, which is then 
used in an Linear Quadratic Regulator (LQR) controller (Ogata, 2008) to experimentally control the vibration of the 
beam. The beam has  piezoelectric elements bonded to it as the control actuator and the sensor, and the controller was 
implemented using dSpace.  The paper is organized as follows. The system identification procedure is described in 
Section 2, the control of the beam in Section 3, and some general conclusions are given in Section 4. 
 
 
2. SYSTEM IDENTIFICATION  
 
2.1. Overview     

 
System identification is the process of finding a mathematical model that represents the dynamical behaviour of the 

physical system under consideration. This model may be linear or nonlinear, continuous or discrete, and time variant or 
invariant. There are basically two important methodologies in system identification: parametric and non-parametric 
methods. Non-parametric methods are those that, through input/output data, obtain a graphical representation of a 
system. This representation may be the impulse response function or the frequency response function. Parametric 
methods, such as the one described in this paper, estimate the parameters that represent the system through experimental 
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data. Among the parametric methods are the ERA and a version of this which incorporates a state observer, the ERA/ 
OKID method. These methods are described in this section, and are applied to a cantilever beam, with piezoelectric 
actuators and sensors attached, The resulting state-space model is used in Section 3 in the design of the controller which 
is implemented experimentally on the beam.  
 
2.2. Eigensystem Realization Algorithm 
 

The ERA was developed in 1985 by Juang and Pappa to estimate the state matrices of a linear, discrete and time-
invariant system. The state matrices are estimated through the discrete time Impulse Response Function (IRF) of the 
system. This is then built into the Hankel matrix and via Singular Value Decomposition (SVD), a set of matrices that 
describes the realization in state space is obtained. Consider the discrete space state realization of a generic system 
                                                                          x(x(x(x(k+1)))) = Ax(Ax(Ax(Ax(k)))) + Bu(Bu(Bu(Bu(k))))                         y(y(y(y(k) =) =) =) = Cx(Cx(Cx(Cx(k)))) +    Du(Du(Du(Du(k))))                                                                                                                                                                (1a,b) 

 
where AAAA is the state matrix, BBBB is the input matrix, CCCC is the output matrix, DDDD is the direct transmission matrix, x(x(x(x(k)))) is the 
state vector, uuuu((((k))))  is the input (control) vector and y(y(y(y(k)))) is the output vector. 

Assuming zero initial conditions, x(0)=0, and an unit impulse input at a given instant u(u(u(u(t))))=1, then the corresponding 
equations for k=0,1,...,l-1 is:   

                             

�(�) = �0, � < �1, t = �0, � > ��                                                                                                                                                                             (2) 
                                          

 

 
Then,    
 xxxx(0) = 0       ⇒ yyyy(0) = DuDuDuDu(0)        xxxx(1) = BuBuBuBu(0)     ⇒  yyyy(1) = CBuCBuCBuCBu(0) + DuDuDuDu(1)          xxxx(2) = ABuABuABuABu(0) + BuBuBuBu(1)    ⇒  yyyy(2) = CABuCABuCABuCABu(0) + CBuCBuCBuCBu(1) + DuDuDuDu(2)      
                 
                                          ⁞             �(� − 1) = ∑ � !"#�(� − 1 − $)        ⇒            %(� − 1) =&!"'(" ∑ )� !"#�(� − 1 − $) + *�(� − 1)&!"'("                      (3) 

 
The Markov parameters of the system are given by ZZZZ0=DDDD, ZZZZ1=CBCBCBCB, ZZZZ2=CABCABCABCAB, ZZZZ3=CACACACA2BBBB, ..., ZZZZk=CACACACAk-1BBBB,   
 
2.3. Observer/Kalman Filter Identification 
 

The relationship between the output yyyy(k) and the input uuuu(k) can be put in a matrix form as  
                                                                                    Y Y Y Y = ZUZUZUZU                                                                                                                                                                                                 (4) 

 
where 
 Y = [y(Y = [y(Y = [y(Y = [y(0)   y()   y()   y()   y(1)   y()   y()   y()   y(2)   ...   y()   ...   y()   ...   y()   ...   y(l-1)])])])]    Z = [D    CB    CAB  ...   CAZ = [D    CB    CAB  ...   CAZ = [D    CB    CAB  ...   CAZ = [D    CB    CAB  ...   CAl-2B] B] B] B]                                                             
 
and 
 

4 =
56
66
7 �(0)    �(1)     �(2)    …      �(� − 1)             �(0)     �(1)    …       �(� − 2)                            �(0)     …       �(� − 3)                                  …              ⁞                                                       �(0) 9:

::
;
 

                                                                                                                             

Because of the low damping in many flexible structures the decay of free vibration takes a long time, as discussed 

by Alves, 2005. From the structural control point of view this means the delay time is very large. In this context, it is 

necessary to use a state observer, that introduces artificial damping in the system, decreasing the length of the vector of 

the data acquired.   
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Adding and subtracting GyGyGyGy(k) to the right-hand side of the state Eq.(1) and combining this with Eq. (2) results in  

 �(� + 1) = ��(�) + #=>(�)                                                                                                                                                           (5)                                         
 

where    

                                       

 � = � + ?), #= = [# + ?*, −?], > = @�(�)  %(�)AB 
 

in which the superscript T denotes the transpose, and GGGG is an arbitrary matrix of appropriate dimension chosen to ensure 

the system has the degree of stability required. The eigenvalues of the closed-loop state matrix for a stable system have 

negative real parts. The input-output matrix form for Eq. (5) which corresponds to Eq. (4) is: 

 D = EF                                                                                                                                                                         (6)      
 
where 
 E = [*   )#   )�#  …    )�(G!H)# … )�(&!H)# ]  
 
is the matrix of observer Markov parameters, and

 
                                                 

(0) (1) (2) ( ) ( 1)

(0) (1) ( 1) ( 2)

(0) ( 2) ( 3)

(0) ( 1)

(0)

− 
 − − 
 − −
 
 
 − −
 
 
 
 

L L

L L

L L

O M L M

L

O M

p lp lp l
l p

u u u u uu u u u uu u u u uu u u u uv v v vv v v vv v v vv v v vv v vv v vv v vv v vV =V =V =V = v vv vv vv v
vvvv

     

 

 
2.4. System Markov Parameters 
 

Overall, there are system Markov parameters and observer gain parameters. The system Markov parameters are used 
to determine the system matrices �, #, ) and *, whereas the observer Markov parameters are used to determine the 
observer gain matrix ?. To determine the system Markov parameters in E from the matrix of observer Markov 
parameters E, it is partitioned as

 
 
                                                   E = LDM E" EH ⋯ EGO                                                                                                                                       (7) 

 
where ( )1−kkZ = CA BZ = CA BZ = CA BZ = CA B . The elements of this matrix can be written as 

 

 EP = [EP(")   − EP(H)]                                                                                             (8) 
 

where (1) ( 1)−   kkZ = C(A +GC) (B+GD) Z = C(A +GC) (B+GD) Z = C(A +GC) (B+GD) Z = C(A +GC) (B+GD) and (2) ( 1)−kkZ = C(A +GC) GZ = C(A +GC) GZ = C(A +GC) GZ = C(A +GC) G . Now 1Z  = CB = C(B + GD) - (CG)DZ  = CB = C(B + GD) - (CG)DZ  = CB = C(B + GD) - (CG)DZ  = CB = C(B + GD) - (CG)D , so that the 

Markov parameter 1ZZZZ is given by 

                                                                                                                                                  E" = EQ(") − EQ(H)*
      

                                                                                                                                                (9) 

 
                                                         

 
To obtain the Markov parameter 2ZZZZ , first consider (1)

2Z = C(A +GC)(B+GD)Z = C(A +GC)(B+GD)Z = C(A +GC)(B+GD)Z = C(A +GC)(B+GD) . This can be expanded and rearranged 

to give 
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EH = EH(")− E"(H)E" − EH(H)*                                                                                                                                        (10) 
 
In a similar way the Markov parameter 3ZZZZ is found to be 

 ER = ER(")− E"(H)EH− EH(H)E"* − ER(H)*                                                                                                                      (11)  
                             

By induction, the general relationship between the actual system Markov parameters and the observer parameter is 
 EM = * EP = EP(") − ∑ E'(H)P'(" EP!';      for k = 1, ..., p EP = − ∑ E'(H)G'(" EP!';               for k = p+1, ... ,∞                                                                                    (12a,b) 

  where p is the number of Markov´s parameters of the observer. This must be chosen such that XY > Z, where m is the 
number of outputs and n is the order of the system, (Alves, 2005). 

The observer Markov parameters can be used as the basis for computing the system Markov parameters. Indeed, the 
matrices AAAA,    BBBB,    CCCC,    D D D D and GGGG are embedded in the observer Markov parameter sequence.  

Knowledge of the system Markov parameters allows a state-space realization as discussed in section 2.2. 
 

2.5. Observer Gain Markov Parameters 
 

The observer gain GGGG can be identified by the following procedure. First, let  
 D]̂ = )�]!"?;    k=1,2,3,...                                                                                                                                       (13) 
 

In terms of the observer Markov parameters D"̂   is given by  
 D"̂ = )? = E_"(H)                                                                                                                                                         (14) 

   
     Then, DĤ  is obtained by considering that 
 EH(H) = )�? = ()�? + )?)?)  =  DĤ + E"(H)D"̂                                                                                                                                              (15) 
 
which yields 
              DĤ =  EH(H)E"(H)D"̂                                                                                                                                                         (16)     
                                       

Similarly,  
 ER(H) = )�H? = ()�H? + )?�? + )�?)?)     =  DR̂ + E"(H)DĤ + EH(H)D"̂   DR̂ = ER(H) − E"HDĤ − EH(H)D"̂                                                                                                                                       (17) 

 
The general relationship is given by 
  D"̂ =  )? = E"(H)

  D]̂ = E]H − ∑ E (H)]!" (" D]!"^ ;     for k=2, ...,p D]̂ = − ∑ E (H) ̀(" D]!"^ ;       for k=p+1, ...,∞                                                                                                             (18) 
 
After obtaining D   =  )�a!H?]̂ , k = 1,2,3,... k, the observer gain GGGG can be computed by 
 
 ? = (bBb)!"bBD^                                                                                                                                                                                     (19) 
 
where 
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b =
566
67 ))�)�H
⁞)�]9::

:; , D^ =
56
66
7 D"̂DĤDR̂
⁞D]c"^ 9:

::
; =  

566
67 )?)�?)�H?
⁞)�]?9::

:;                                                                                                                       (20) 

                                         
 
2.6. Experimental Identification of the Model 

 
The techniques described in the previous subsections were applied to identify the state-space matrices (AAAA, BBBB, CCCC and DDDD) of the aluminium cantilever beam with dimensions 35.4 ×  42.0 ×  2.0 mm, shown in figure 1.  The system was 

excited by white noise, over a frequency range of 0 to 500 Hz, using a Lead-Zirconate-Titanate (PZT) actuator with 
dimensions: 42 ×  23 ×  0.2 mm. The vibration was measured using a Polyvinilidene-Fluoride (PVDF) patch of 
dimensions 30.0 ×  10.0 ×  0.2 mm positioned at the root of the cantilever.  

 
 

 
Figure 1. Cantilever beam with PZT and PVDF coupled. (The PVDF element is attached to the other side of the 

cantilever beam and is co-located with the actuator) 
 

Using the method presented in section 2, the Markov parameters of the observer and the system were calculated, and 
consequently a state-space model of the cantilever beam was determined. As it was intended to control only the first 
two modes of the system, it was necessary to reduce the state-space model to a fourth order model. The Hankel norm 
model reduction technique (Gawronski, 1998), was used. This method allows the mapping of past inputs and future 
outputs through states of the system and quantifies the individual contribution of each state. The states that contribute 
least are discarded.  The identified system matrices A, B ,C and D of the reduced order model are given by 

 

A = d −4.7608 −487.3184 −2.5197 −7.9764496.20830 −4.2912    0    −1.2954  −1.0591 4.828279.94040           0         −81.1069 −2.2728k,       B = d 0.2160−0.3655−0.03460.2747 k 

 
C = [−0.4143 −0.0730 −0.2213 −0.1695],             D = 0 

 
The measurement of the frequency response of the system (in terms of the voltage applied to the PZT actuator and 

the voltage measured from the PVDF patch) together with the reconstructed frequency response from the model are 
shown in figure 2. 

 From figure 2, it can be seen that the frequency response of the identified model is a reasonable match to the 
frequency response of the actual system for the first two modes. 

PZT-actuator 

Cantilever Beam 
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Figure 2. The measured (actual) and the reconstructed frequency response of the system (identified) from the state 

space model (a) magnitude, (b) phase.  
 

 
3. CONTROL DESIGN AND IMPLEMENTATION 
 

In this section, the controller design and implementation using the results of the previous section are discussed. An 
LQR controller was chosen as the structure and the controller are both linear. The cantilever beam shown in Fig. 1 beam 
was used in which the PZT patch was used as the control actuator and the PVDF patch as the sensor. The controller was 
implemented using dSpace and a PC. This board was connected to the control system into the computer, which returned 
a response to the amplifier connected to the PZT. This is shown in figure 3.   
 
3.1. Controller Design   
  

Consider the discrete-time state-space system description given in equation (1a,b). In this case the input vector is 
given by                             

 u(u(u(u(k)))) = ----Kx(Kx(Kx(Kx(k))))                                                                                                                                                                                     (21) 
 
and KKKK is the matrix of gains which are to be obtained by minimization a performance index. The quadratic performance 
index J with summation limits 0 to ∞ (the infinite-horizon case) which is to be minimized, is given by (Anderson et al., 
1989) 
                                                                                                                                               m = ∑ (�B(�)n�(�)  + �B(�)o�(�))∞P(M                                                                                                                  (22) 
 
where the matrices QQQQ ≥ 0 and RRRR > 0 determine the relative importance of the state xxxx and the control effort uuuu    respectively. They also determine the relative importance of the error and the control effort. In the practical case 
considered here, the matrix of gains KKKK that was determined was for a finite-horizon case . 

The unknown elements of the matrix KKKK are determined so as to minimize the performance index, so uuuu(k) = ----KxKxKxKx(k) is 
optimal for any initial state xxxx(0).  To determine the elements of matrix KKKK which minimizes the performance index, it is 
necessary to solve the Riccati matrix equation given by (Anderson et al., 1989) 

                                                                      AAAAT(PPPP----PBPBPBPB(RRRR+BBBBTPPPPBBBB)-1BBBBTPPPP)AAAA + QQQQ    -    PPPP =  0                                                                                                                    (23) 
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where matrices  AAAA and    BBBB    are the state and
unique positive definite solution to Eq. (23)
                                                                                     K K K K = (RRRR+    BBBBTPAPAPAPA)-1BBBBTPPPPAAAA                                                                     
 
      For LQR control of the cantilever the 
be 1. The matrix KKKK was then determined to be:
 x = [−1039   − 604     9   − 20] 

 
 
3.2. Experimental Implementation 
 
The closed-loop block diagram of the cantilever beam under control i
 

Figure 3. 
 

 
The beam was disturbed by displacing the tip 

controller was turned off and the results of this test can be seen in figure 4a. It can be seen that the damping in the 
system is quite light as it takes a long time
showed that the beam was vibrating primarily in its fundamental mode, and the damping ratio
estimated to be 0.0682 using the method of logarithmic decrement.

The experiment was then repeated but this time with the controller turned on. The results are shown in figure 4b. It 
can be seen that the vibration decays away much more quickly demonstrating the effectiveness of the controller.
damping ratio in this case was found to be 
damping to the system.  

                                                                     

and the input matrices, respectively (Skogestad et al., 
Eq. (23). After determining the matrix PPPP, the matrix of gains

                                                                                                                                                                                                     
For LQR control of the cantilever the matrix QQQQ was chosen to be the identity matrix of order 4 and

determined to be: 

of the cantilever beam under control is shown in figure 3.  

 
Figure 3. The closed-loop feedback system. 

by displacing the tip by one centimeter and then letting it freely vibrate
controller was turned off and the results of this test can be seen in figure 4a. It can be seen that the damping in the 
system is quite light as it takes a long time for the vibration to decay away. Close examination of the time response 
showed that the beam was vibrating primarily in its fundamental mode, and the damping ratio

using the method of logarithmic decrement. 
eriment was then repeated but this time with the controller turned on. The results are shown in figure 4b. It 

can be seen that the vibration decays away much more quickly demonstrating the effectiveness of the controller.
found to be 0.2176. It is thus clear that the main effect of the control wa

                                                                      

 2007). The matrix PPPP is the 
of gains KKKK, can be found from  

                                                                                              (24) 

was chosen to be the identity matrix of order 4 and RRRR was chosen to 

  

and then letting it freely vibrate. Initially the 
controller was turned off and the results of this test can be seen in figure 4a. It can be seen that the damping in the 

for the vibration to decay away. Close examination of the time response 
showed that the beam was vibrating primarily in its fundamental mode, and the damping ratio for this mode was 

eriment was then repeated but this time with the controller turned on. The results are shown in figure 4b. It 
can be seen that the vibration decays away much more quickly demonstrating the effectiveness of the controller. The 

the main effect of the control was to add more 
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Figure 4. Vibration of the cantilever beam measured using the PVDF sensor, (a) without and (b) with control. 
 

 
 
4. CONCLUSIONS 
 

This paper has described an experimental study into the control of a cantilever beam. LQR control was 
implemented, which required a state-space model of the system. This was achieved using the ERA/OKID system 
identification technique with the beam being driven with white noise. The subsequent model was reduced to a fourth 
order model as only the first two modes of the beam were targeted for control. A displacement step input was applied to 
the tip of the beam and the controller, which sensed vibration using a PVDF patch at the root of the beam, and applied a 
control force through a collocated PZT actuator, significantly reduced the time for the transient vibration to decay away. 
The damping ratio of the first mode was increased from 0.0682 to 0.2176 demonstrating the efficacy of the control 
strategy.   
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