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Abstract. The inverse kinematics determines the joint angles that result in the desired position of the manipulator’s 

end-effector with regard to the reference coordinated system. The inverse kinematics solution is difficult a time that the 

mapping between the Cartesian space and the joint space is nonlinear and involves equations that can have multiple 

solutions. This work presents the application of a neural network with radial basis function (RBF) for the inverse 

kinematics solution of a robotic manipulator with three degrees of freedom. For a good learning generalization in the 

training phase of RBF network, some initial and final points had been initially generated inside of the manipulator’s 

work volume. In order to prevent extreme angular oscillations, the angles for each one of the n generated points, they 

had been optimized by genetic algorithms. In accordance with the cartesian coordinate (x, y) supplied, the RBF neural 

network implemented in this work supplied angles that it had presented very next to the desired values. 
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1. INTRODUCTION 

 

The fundamental problems of robot kinematics are the computation of the forward and inverse mappings between 

joint space and Cartesian task space. The former, mapping from joint space to Cartesian task space, is called forward 

kinematics and the latter, i.e. mapping from Cartesian task space to joint space, is called inverse kinematics. In robot 

control applications, the inverse kinematics is more important since, by default, robot tool trajectories are usually 

specified in terms of Cartesian task space coordinates. However, some actuators may receive commands in the joint 

space coordinates only. In this situation, the trajectories must be transformed to the joint space before the robot is 

controlled. The inverse kinematics of a serial robot is more complex than the forward kinematics since the inverse 

kinematics equations are more complex and nonlinear. In this work, inverse kinematics solution using neural networks 

is presented, some points in the work volume of manipulator are taken to use in the cubic path planning to generate the 

(θ1, θ2, θ3) joint angles according to different (x, y) Cartesian coordinates. To avoid great angular displacements from 

initial to final position, genetic algorithms were used to optimize both angular displacement and positional error. 

 

2. ROBOTIC MANIPULATOR 

 

In this work was considered a planar robotic manipulator with three degrees of freedom (Fig. 1). The joint angles 1, 

2 and 3 can vary between - and . The lengths of the links l1, l2 and l3 are 10 cm. 

 

 
 

Figure 1. Planar Robotic Manipulator  

 

The Direct Kinematics for this robotic manipulator is given by: 
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3. RBF NETWORK MODEL 

 

The Radial Basis Function network (RBF) has a feed forward structure consisting of a single hidden layer of J 

locally tuned units, which are fully interconnected to an output layer of L linear units (Oyama and Tachi, 2000). All 

hidden units simultaneously receive the n-dimensional real valued input vector X (Fig. 2). 

 

 
 

Figure 2. Radial basis function neural network 

 

The main difference from that of Multi Layer Perceptron (MLP) is the absence of hidden-layer weights. The hidden-

unit outputs are not calculated using the weighted-sum mechanism/sigmoid activation; rather each hidden-unit output Zj 

is obtained by closeness of the input X to an n-dimensional parameter vector µj associated with the jth hidden unit. The 

response characteristics of the jth hidden unit (j = 1, 2, …, J) is assumed as, 

 

𝑍𝑗 = 𝐾  
 𝑋−𝜇 𝑗 

𝜎𝑗
2                (2) 

 

where K is a strictly positive radially symmetric function (kernel) with a unique maximum at its „centre‟ µj and which 

drops off rapidly to zero away from the centre. The parameter j is the width of the receptive field in the input space 

from unit j. This implies that Zj has an appreciable value only when the distance || Xµj ||is smaller than the width j. 

Given an input vector X, the output of the RBF network is the L-dimensional activity vector Y, whose lth component 

(l = 1, 2 L) is given by: 

 

𝑌𝑙 𝑋 =  𝑤𝑙𝑗𝑍𝑗  𝑋 𝐽
𝑗=1  (3) 

 

For l = 1, mapping of eq. (1) is similar to a polynomial threshold gate. However, in the RBF network, a choice is 

made to use radially symmetric kernels as „hidden units‟. RBF networks are best suited for approximating continuous or 

piecewise continuous real-valued mapping f : R
n

 R
L
, where n is sufficiently small. These approximation problems 

include classification problems as a special case. From equations (2) and (3), the RBF network can be viewed as 

approximating a desired function f (X) by superposition of non-orthogonal, bell-shaped basis functions. The degree of 

accuracy of these RBF networks can be controlled by three parameters: the number of basis functions used, their 

location and their width. In the present work we have assumed a Gaussian basis function for the hidden units given as Zj 

for j = 1, 2, J, where: 

 

𝑍𝑗 = 𝑒𝑥𝑝  −
 𝑋−𝜇 𝑗 

2

2𝜎𝑗
2   (4) 

 

and µj and j are mean and the standard deviation respectively, of the jth unit receptive field and the norm is the 

Euclidean. 

 

3.1. Training of RBF neural networks 

 

A training set is an m labeled pair {Xi, di} that represents associations of a given mapping or samples of a continuous 

multivariate function. The sum of squared error criterion function can be considered as an error function E to be 

minimized over the given training set. That is, to develop a training method that minimizes E by adaptively updating the 

free parameters of the RBF network. These parameters are the receptive field centres µj of the hidden layer Gaussian 

units, the receptive field widths j, and the output layer weights (wij). Because of the differentiable nature of the RBF 

network transfer characteristics, one of the training methods considered here was a fully supervised gradient-descent 

method over E. In particular, µj, j and wij are updated as follows: 
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where µ, , and w are small positive constants. This method is capable of matching or exceeding the performance of 

neural networks with back-propagation algorithm, but gives training comparable with those of sigmoidal type of Feed 

Forward Neural Network (FFNN). 

The training of the RBF network is radically different from the classical training of standard FFNNs. In this case, 

there is no changing of weights with the use of the gradient method aimed at function minimization. In RBF networks 

with the chosen type of radial basis function, training resolves itself into selecting the centres and dimensions of the 

functions and calculating the weights of the output neuron. The centre, distance scale and precise shape of the radial 

function are parameters of the model, all fixed if it is linear. Selection of the centres can be understood as defining the 

optimal number of basis functions and choosing the elements of the training set used in the solution. It was done 

according to the method of forward selection. Heuristic operation on a given defined training set starts from an empty 

subset of the basis functions. Then the empty subset is filled with succeeding basis functions with their centres marked 

by the location of elements of the training set; which generally decreases the sum-squared error or the cost function. In 

this way, a model of the network constructed each time is being completed by the best element. Construction of the 

network is continued till the criterion demonstrating the quality of the model is fulfilled. The most commonly used 

method for estimating generalization error is the cross-validation error (Venkatesan and Anitha, 2006). 

 

4. CUBIC TRAJECTORY 

 

This section investigates, in a constant time, the trajectory problem of the manipulator from an initial point until a 

final point in the Cartesian space. In the search of a function for each joint between the initial position, 0, and the final 

position, f, the set of angles can be calculated, on the basis of the position and final orientation of the manipulator, 

through the use of its kinematics equations. It is necessary four restrictions in the function (t) that belong to the joints. 

Here, (t) represents the angular position in the instant of time t (Köker et. Al., 2004). 
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Two additional restrictions come from a function that is continuous in the point of the joint speed, i.e. the speed will 

be zero in the initial and final points of the joint. 
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These four conditions can be provided for a polynomial of third order. Whereas a cubical polynomial has four 

coefficients, then, a cubical trajectory can be written as: 
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The speed and the acceleration of the joint along the trajectory are given respectively by: 
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If the Eq. (10) and (11) are combined, four equations with four unknown quantity are gotten: 
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Finally, with solution of the equations above, the coefficients are found as follow: 
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Using the equations above, the Eq. (14) is derived and used to compute the function of reference position and speed: 
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5. GENETIC ALGORITHMS 

 

The Genetic Algorithms (GAs) constitute one technique of search and optimization, highly parallel, inspired in 

Darwin‟s principle of evolution. The natural principles, on which the GA's were inspired, are simple. The selection 

principle privileges the most apt individuals and, therefore, with more probability of reproduction. The individuals with 

more descendants have more chances of transmitting their genetic codes to the next generations (Michalewicz, 1994). 

Such genetic codes constitute the identity of each individual and are represented in the chromosomes. These principles 

are emulated in the construction of computing algorithms that search the best solution for one determined problem, 

through the evolution of populations of codified solutions through artificial chromosomes. The components of a GA 

include: inicialization, selection, crossing and mutation as illustrates the Fig. 3 (Kalra et. al., 2003): 

 

 
 

Figure 3. Component of a GA 

 

5.1. Individual representation 

 

The success of a genetic algorithm for a specific problem of optimization depends on the representation of an 

individual in the population (Kalra et. al., 2003). Each possible solution in the search space is represented by a sequence 

of symbols s generated from an alphabet (binary or real). Each s sequence corresponds to a chromosome and each 

element of s is equivalent to a gene. For a robotic manipulator, the individuals in a population can be represented, with 

real codification, through the joint angles: {1 2 3}. The real codification was chosen to avoid succeeding conversions 

of the binary code or gray for real values, saving, thus, computing time. 

 

5.2. Inicialization 

 

In the inicialization process, a population of chromosomes is generated randomly. The size of the population affects 

the efficiency and the performance of the GA (Goldberg, 1989). A population of small dimension can take the GA to 

converge quickly to a maximum local, while a very big population, damages the computing performance of the 

algorithm. The initial population for a robot with three degrees of freedom is generated randomly respecting the inferior 

(L) and superior (U) limits of each joint variable: 
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5.3. Evaluation 

 

To each structure (solution) is associated a numerical value (fitness) that represents the quality of this structure and 

indicates its aptitude degree. The value of fitness is gotten through the objective function. The objective function of this 

study aims at the minimization of the position error of the end-effector manipulator and the smallest joint angular 

displacement. The positioning error is calculated through the Euclidean Distance between the current and final 

coordinates of the manipulator: 

 

2
fi

2
fip )yy()xx(E     (16) 

 

Being (xf, yf ) the desired position and (xi, yi) the current position, gotten through the Direct Kinematics calculation 

of the manipulator (Eq. 1) with the use of the current angles generated by the GA. The angular error is also gotten 

through the Euclidean Distance between the initial and final configurations of the joint angles of the manipulator: 
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Where {i,in} are the initial configuration angles of the manipulator, {i,f} are the current angles generated by the GA 

and ||.|| denotes the Euclidean distance. In this work, the positioning error and the angular displacement are approached 

together through a multi-objective function (Nunes et al., 2006). Using the weighting factors method, that satisfies the 

restriction 1 + 2 = 1, the optimization problem is defined as the inverse of the error: 

 

a2p1 EE
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 
    (18) 

 

The weighting factors 1 and 2 are experimentally chosen as 0.12 and 0.88 respectively. 

 

5.4. Seletion 

 

The selection process in GAs chooses individuals for the reproduction. The selection is based on the individuals 

aptitude: best individuals have more probability of being chosen for the reproduction. The selection method chosen for 

this work was Stochastic Universal Sampling (SUS), in which the individuals are mapped out in adjacent segments 

whose length is the same as the value given for the evaluation function to each individual. In this method it is used N 

hands equally spaced between them (N = number of parents to be selected) and the roulette spins only once. The chosen 

parents are the individuals marked for the N hands. The distance between the hands will be 1/N and the position of the 

first hand is given for a number generated randomly between 0 and 1/N. The method SUS is considered fast enough for 

the serial processing and more efficient than the Roulette selection methods, Stochastic Rest and Ranking (Baker, 

1987). 

 

5.5. Crossing and mutation 

 

The individuals selected for the following population are recombined through the Crossover operator. This operator 

is considered the main characteristic of the GAs. The pairs of individuals are chosen randomly and new individuals are 

created from the interchange of the genetic material. The descendants will be different, however, with genetic 

characteristics of both. This method (single-point crossover) is the most applied one and was used in this work. The 

chromosomes created from the crossover operator are, later, submitted to the mutation operation. Based on the 

probability pm of mutation, the content of a chromosome position is modified. 

 

6. NEURAL NETWORK IMPLEMENTATION 

 

A Radial Basis Function neural network (RBF) with two neurons in the input layer, 200 neurons in the hidden layer 

and three neurons in the output layer were trained to provide the manipulator´s inverse kinematics solution. The RBF 

network receives as entered the cartesian coordinates (x, y) and supplies, as exit, the angles (θ1, θ2, θ3) corresponding. 

The schematic diagram of the system is given in Fig. 4. 
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Figure 4. A schematic diagram of the implemented system 

 

Firstly, was generated 1200 points in the manipulator work volume. Cubic trajectory planning, explained in Section 

4, was used to generate the (θ1, θ2, θ3) joint angles according to different (x, y) Cartesian coordinates, from initial point 

to target point. These values were recorded in a file to form the learning set of the neural network. To prevent extreme 

angular oscillations from initial to target point (Fig. 5), the angles for each generated points, had been optimized by 

genetic algorithms, described in Section 5. 

 

 
 

Figure 5. Angular oscillation 

 

Five thousand of these data was used in training of neural network, and the rest was used in testing. The training 

process is completed until the error is acceptable. To understand whether the error is acceptable or not, Euclidean 

Distance that refers to difference between the end-effector and the target point is used. As a result, it can be decided that 

the error is acceptable or not depending on the obtained distance. Here, the sensitivity of the application is also 

important in the decision of acceptable error. It has been completed approximately in 300 iterations. The number of 

neurons in hidden layer was found experimentally. Error at the end of the learning is 0.0000114 for training set. The 

direct kinematics equations given in Eq. (1) were used to prepare the training set of the neural network. 

 

7. RESULTS 

 

The neural network was evaluated and used to get the inverse kinematics solution of the robotic manipulator. The 

neural network results were compared with the target values and the relative errors of the angles had been evaluated for 

the trajectory defined for the manipulator. Due the great amount of points used for the test, will be shown the results for 

some experiments. For the (x, y) coordinated pairs presented to the neural net, were obtained the results presented in 

Tab. 1. 

 

Table 1. Simulation results. 

 

Target point 

(x, y) 

Neural network results Average Relative Error 

(%) 1 2 3 

(11.0600, 16.6530) 0.15446 1.93340 1.61350 0.004224 

(-4.4292, 25.1580) 1.21700 2.43000 1.99510 0.024799 

(-19.8880, 20.1140) 2.06200 2.82100 2.29770 0.000000 

(12.4790, 25.4990) 0.78677 1.45790 1.41400 0.072212 

(15.9000, 18.1020) 0.21384 1.53240 1.39820 0.000000 

 

x

y

1

2

3

Initial configuration

Configuration with great angular oscillation

Configuration optimizated by AG
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The average relative error showed in Tab. 1 is based on the current values of the joint angles in the target points, 

gotten by Genetic Algorithms. In the Tab. 1, the used neural network reached an average relative error of in maximum 

0.072212% in the joint angles determination. The angles had been substituted in the Eq. 1 in order to get x and y 

positions. The results are presented in Tab. 2. The biggest relative positional error in x was 0.14901% and, in y, 

0.00497%. 

 

Table 2. Cartesian coordinates determination. 

 

Target point 

(x, y) 

(x, y) position obtained by 

Neural network results 

Relative Error 

in x (%) 

Relative Error 

in y (%) 

(11.0600, 16.6530) (11.0610, 16.6530) 0.00904 0.00000 

(-4.4292, 25.1580) (-4.4358, 25.1580) 0.14901 0.00000 

(-19.8880, 20.1140) (-19.8880, 20.1150) 0.00000 0.00497 

(12.4790, 25.4990) (12.4960, 25.5000) 0.13623 0.00392 

(15.9000, 18.1020) (15.9010, 18.1020) 0.00629 0.00000 

 

8. CONCLUSION 

 

In this work, the inverse kinematics solution using RBF neural network for a three-joint robotic manipulator is 

presented. A genetic algorithm was implemented for minimum angular displacement from initial to target point of the 

trajectory. The training angles for the neural network had been generated by a cubic trajectory. The neural network 

presented good performance during the tests. It is observed that RBF neural network can be used in inverse kinematics 

problem. 
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