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Abstract. This paper presents the development of an indirect force control for robot manipulators with elastic joints
employed in machining tasks. Based on the study of centralized impedance control for rigid manipulators, it is proposed
an extension for robots with torsional flexibility in the joints structured as a cascade control. Additionally, it is proposed a
reduced mathematical model, based on existing dynamic models of the reaction forces, that agree with the reaction forces
generated by the cutting tool in contact with the environment. The present two-dimensional model relies on the tangential
and normal forces on the surface, allowing to analyze the stability of the system and to obtain gain preconditions for
the proposed controller, considering the parameters of the machining process. A machining task is specified for a planar
manipulator with two degrees of freedom, and consists on removing the weld fillets to recover a metal surface. Simulation
results for this task are presented to show the effectiveness of the proposed controller.
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1. Introduction

The major obstacle that prevents the adoption of robots in processes of removing material (machining, deburring, and
etc) is the fact that the stiffness of current industrial robots is much smaller than a standard CNC machine. The stiffness for
an articulated robot is usually less than 1N/μm, while a standard CNC machine often has stiffness greater than 50N/μm.
However, solutions based on CNC machinery generally present high costs, difficulting the return of invested capital.

To this end, robotics based on flexible automation appears as an ideal solution by its programmability, adaptability,
flexibility, relatively low cost and especially by the results of industrial robots already employed in the foundry machinery
and transport of parts in processes.

Whereas, currently, the majority of robot manipulators use harmonic drives for the transmission system, it is assumed
that the major portion of flexibility is caused by these mechanisms. Therefore, since robots use indirect measurement
of displacement on the drive side (motor encoders), the joint elasticity allows the individual axes to differentiate among
themselves in the desired and actual positions, vibrating out of phase. This constructive arrangement has resulted in
collocation problems, exhibited by a dynamic between the actuator and sensor, including non-dynamic modes in the
system. This elasticity in the joints can cause an increase in the stabilization time of the manipulator and even make the
system unstable (Spong, 1987).

In cases of contact tasks, is common the occurrence of non-collocated modes, since the force sensor is located on the
end-effector and the motors, as the position sensors, are located before the transmission system. To face these problems
in contact tasks, some impedance control strategies are presented in the literature, as Jiang et al. (2005) and Ferreti et al.
(2004).

This paper, in turn, presents another impedance control strategy, which takes into account the joint elasticity to increase
the task accuracy, and its stability analysis face to machining tasks.

This paper is organized as follows: first it is presented the mathematical model of the elastic joint manipulator, con-
sidered to the impedance control strategy (Sect. 2). In section 3 the impedance control strategy is developed. A simplified
model of forces to the environment reactions is proposed in section 4. The stability analysis of the proposed impedance
control is realized, based on the simplified model, at section 5. Finally, section 6 shows the results of simulation for a
given machining task and the conclusions are presented in section 7.

2. Mathematical model of the elastic joint manipulator

Consider an open kinematic chain of n rigid links, interconnected by n joints that suffer elastic deformation. The
manipulator is driven by electric actuators mounted on their joints. More precisely, consider the standard situation in
which the engine i is mounted on the link i− 1, moving the link i, and the reduction is placed before the elastic element
(figure 1(b)).

For determining the equation of motion the following assumptions are made about the mechanical structure:

• The elasticity in the joints can be modeled as a spring with linear characteristics. As a torsional spring for the
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Figure 1. (a) Service manipulator and (b) joint model

rotational joints and linear for the prismatic joints.

• The rotors are modeled as uniform bodies having its centers of mass on the axis of rotation.

Let q1 be the vector (n × 1) of link positions, and q2 the vector (n × 1) of motor positions (rotor), the mathematical
model of the system can be described in joint space, based on Lagrangean Formulation, as:

B(q1)q̈1 + C(q1, q̇1)q̇1 + g1(q1) = Kz (1)

Jz̈ +Bz(q1, q̇1, ż) +Gz(q1, z) = u (2)

with,

z = q2 − q1

Bz(q1, q̇1, ż) = −JB−1(q1)C(q1, q̇1)q̇1

Gz(q1, z) = JB−1(q1)[Kz − g1(q1)] +Kz

(3)

where B(q1) is the (n × n) inertia matrix, symmetric and positive defined for all q1, C(q1, q̇1) is the (n × n) matrix
of centrifugal forces and Coriolis, G(q1) is the vector (n × 1) of gravitational forces. The rotor inertia matrix J has
dimension (n x n) and is diagonal positive defined, K is the diagonal stiffness matrix (n × n) that contains the torsional
constants (Readman, 1994). The subsystem (1) will be called links subsystem while (2) rotors subsystem.

Cartesian space model

Independently of the manipulator’s structure, the task specifications are usually given in cartesian space, while the
control actions are performed in joint space. When the function assigned to the manipulator consists in a contact tasks, it
is advantageous that the control scheme is carried out in cartesian space, since the measurement of the reaction forces is
obtained from this space. So, for the purpose of this paper, it is required that the mathematical model of the manipulator
to be transformed to the cartesian space to obtain a suitable formulation for the control strategy. For this, we use some
properties of the relational Jacobian matrix JA:

ẋ = JAq̇1 → q̇1 = J−1
A ẋ (4)

ẍ = JAq̈1 + J̇Aq̇1 → q̈1 = J−1
A ẍ− J−1

A J̇Aq̇1 (5)

u = JT
AhA (6)

where hA represents the force exerted by the manipulator in the cartesian space and the index "A", used in h A, refers to
the use of the analytical Jacobian in the mapping.

Substituting (4), (5) and (6) at (1) yields the elastic manipulator’s model described in the cartesian space as:

B̄(q1)ẍ+ C̄(q1, q̇1)ẋ + ḡ(q1) = K̄z

Jz̈ +Bz(q1, q̇1, ż) +Gz(q1, z) = u
(7)

where x represents the position vector of the end-effector in the cartesian space, B̄(q1) = J−T
A B(q1)J

−1
A the inertia

matrix, C̄(q1, q̇1) = J−T
A C(q1, q̇1)J

−1
A − J−T

A B(q1)J
−1
A J̇AJ

−1
A the matrix of centrifugal forces and Coriolis, ḡ(q1) =

J−T
A g1(q1) the matrix of gravity and K̄ = J−T

A K the stiffness matrix to the cartesian space.
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3. Impedance control for elastic joint manipulators

A parameterization in cascade of the elastic joint manipulator facilitates the synthesis of control. The strategy that will
be presented below allows to obtain two blocks in closed loop whose dynamics is quasi-linear and where the equations
are simpler when compared with other existing methods. This facilitates the analysis of stability and choice of parameters
of synthesis, while improving the robustness of the control. This approach considers the case of strong elasticity and
therefore complements the approach based on singular perturbation theory, which assumes a model where the elasticity is
smaller.

The control strategy is performed in two stages. The first is to determine the desired variable z d, which allows the
linearization of the subsystem of the links and allows the injection of the control of impedance. The second is the
calculation of the control torque u from zd resulted from the first stage. The realization of this control is possible provided
that the following hypotheses are met (Benallegue, 1991):

Hypothesis 2.1 - The desired trajectory for x(t) is smooth and its successive time derivatives up to fourth order are
continuous and limited.

Hypothesis 2.2 - The variables, x, ẋ, z and ż are measurable or observable for all t.
Hypothesis 2.3 - The kinematic mapping ka(q1) → x is smooth and invertible, that is, the analytical jacobian is

non-singular.

3.1 The impedance control in the links subsystem

Consider the dynamic equations of the links subsystem (1) under the influence of an external force:

B̄(q1)ẍ+ C̄(q1, q̇1)ẋ+ ḡ(q1) = K̄(zd − z̃)− h (8)

where h represents an external force exerted on the end-effector and z̃ = z d − z.
Referring to the model (8), consider the following control law:

zd = K̄−1[B̄(q1)u0x + C̄(q1, q̇1)ẋ+ ḡ(q1)] + K̄−1(B̄B−1
m + I)h (9)

where u0 is an auxiliar input of control and Bm is a matrix of gains to be defined.
Substituting (9) in (8) the dynamic in the cartesian space can be described by:

ẍ = u0 − B̄−1K̄z̃ − h (10)

which reveals the existence of a non-linear term coupling with the variable z̃.
The input control u0 is designed to insert a desired behavior to the manipulator, that is:

u0 = B−1
m (Bmẍd +Dm

˙̃x+Kmx̃) (11)

where Bm, Dm and Km are positive defined diagonal matrices.
Substituting (11) in (10) yields the closed loop dynamic of the manipulator in the cartesian space:

Bm
¨̃x+Dm

˙̃x+Km
˙̃x = h+BmB̄−1K̄z̃ (12)

The equation (12) is second order and quasi-linear, since the right term of the equality is non-null and non-linear,
and depends on the error z̃ of the rotors subsystem dynamics. The attributed impedance to the mechanical system is
characterized by a matrix of mass Bm, a matrix of damping Dm, and a matrix of stiffness Km. The implementation of
(9) requires the feedback of the manipulator state variables (q 1, q̇1) and the measurement of the contact forces h. Some
considerations must be made on the controller tuning, because, even any choice for Bm, Dm and Km, that carry physical
features is possible, some complications usually appear in practice. In particular, if the position where the contact occurs
is not exactly known, the diagonal elements of Bm and Km should be chosen to avoid excessive forces of impact.

Due to disturbance BmB̄−1K̄z̃ influence in the final end-effector position, the goal of control in the second step is to
make this disturbance converge to zero sufficiently fast. Having z d designed, it remains to obtain the control law for the
rotors subsystem which ensures asymptotic stability of z̃, corresponding to the second stage of the control strategy.

3.2 The trajectory tracking for the rotors subsystem

In the second stage the objective is to ensure the convergence rate of the error z̃ to zero. This convergence is achieved
if performed a procedure of linearization and decoupling, both similar to that presented in the previous item. For this
purpose it is calculated the control torque u for the second block as follows:

u = Jγ +Bz(q1, q̇1, ż) +Gz(q1, z) (13)
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where γ is an auxiliar control input that acts to obtain an error dynamic asymptotically stable in the subsystem of rotors.
Substituting (13) in (2), yields:

Jz̈ +Bz(q1, q̇1, ż) +Gz(q1, z) = Jγ +Bz(q1, q̇1, ż) +Gz(q1, z)

J(z̈ − γ) = 0

Since the matrix J is invertible:

J(z̈ − γ) = 0 −→ z̈ = γ (14)

The dynamic injected by γ can now be chosen, for example, as a control PD:

γ = z̈d +KDγ
˙̃z +KPγ z̃, z̃ = zd − z and ˙̃z = żd − ż (15)

where KDγ = KT
Dγ > 0 and KPγ = KT

Pγ > 0 are diagonal matrices of project.
Substituting (15) in (14), is obtained the following error equation in the rotors subsystem:

¨̃z +KDγ
˙̃z +KPγ z̃ = 0 (16)

The choice of the PD controller gains can be made seeking an error dynamic with critical damping. The dynamics of
the errors in the manipulator system under the action of this control technique is generally asymptotically stable, as will
be seen in section 5.

4. The machining task and the force model

Depending on the task, many parameters must be considered such as the tool tangential speed, the tool topology and
grind, the direction of the tool angular velocity with respect to the feedrate direction, the workpiece stiffness, the depth of
cut and the height and thickness of a burr. For example, if the material is homogeneous, then the cutting force increases
proportionally to the amount of removed material. If the manipulator end-effector moves with constant speed along the
contour, then the force will vary proportionally to the depth of cut. The cutting processes, however, also generate a
reaction force that is not directly tangential to the surface. Indeed, the normal component of this contact force can bring
problems to the control force introducing disturbances in the control loop so that the tool penetrates the workpiece or loses
contact, depending on the direction of its rotation with respect to the feedrate direction.

It was observed that most authors neglect the third dimension by despise the magnitude of the contact force orthogonal
to the tangential and normal vectors to the surface. The same will be done in this paper, which efforts will be considered
only in normal (sub-index n) and tangential (sub-index t) directions to the surface and, consequently, a XY plan of the
cartesian space that will be referenced by the sub-indices x and y.

In figures 2(a) and 2(b), can be seen the forces that act on a workpiece during the cutting process. To simplify the
illustration it is assumed that every moment only one tooth of the tool is in contact with the surface and that all forces act
on a single point.
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Figure 2.

If the tool feedrate direction coincides with the peripheral speed direction of the cutting tooth in contact with the surface
(Figure 2(a)), the machining forces that act on the workpiece has a component �Ft oriented as the tangential velocity, while
the normal component �Fn is oriented from the surface to the tool. The reaction forces generated on the tool (and measured
by the force sensor) have, therefore, opposite directions to the feedrate direction characterizing a discordant movement. It
is interesting to note that in this case the reaction normal force tends to pull the tool into the workpiece surface and it can,
eventually, make the tool to penetrate overmuch and lock preventing the robot to perform the task.
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On the other side, if the tool feedrate direction is opposite to the peripheral speed direction of the cutting tooth in
contact with the surface (Figure 2(b)), the reaction forces generated on the tool tend to push it from the surface while the
reaction tangential force tends to increase the feedrate velocity, which features a concordant movement.

For each tooth of the tool in contact with the surface, there is a cutting force, �Fc, acting in the direction of the cutting
tangential velocity and a normal force, �Fr, acting in the radial direction. Usually it is assumed that the radial force is
proportional to the cutting force, ie,

Fr = Fc tan(φ− γ) (17)

where φ is the friction angle (generally difficult to estimate) and γ is the tool frontal bevel (Figure 2(c)).
The cutting force on the workpiece Fc can be expressed as (Radford, 1980):

Fc =
b δ v u

w
(18)

where b is the mill thickness, δ the cutting depth, v the feedrate, u is the material specific energy and w is the milling
angular velocity. These parameters also present great difficulty in their estimation. In the task coordinate system, �Fn and
�Ft represent the components of the resulting force �F .

Knowing that in a properly planned task of machining the cutting depth should vary proportionally with the height
of the burr, the choice of the cutting depth will depend on the magnitude of the normal force that is desirable to support,
which indirectly results in a proportionality between the reference to the normal force and the height of the burr. The
aim of this paper is not the detailed study of the force model, however, it’s necessary to define a simple and coherent
representative model to perform the stability analysis. Not enough, we need to get a model that takes into account the
decomposition of the normal and tangential forces in cartesian space.

Therefore, this section provides the definition of a simplified model to perform the stability analysis. A synthesis of
the models found in Ziliani et al. (2007), Sugita et al. (2007), Kim et al. (2007), Pires et al. (2007), Ziliani et al. (2005),
Chen and Tung (2000) and Radford (1980).

4.1 The Simplified force model

The purpose of this section is to define a simplified model of forces that explain its dependence on the main dynamic
parameters: feedrate velocity and cutting depth. It is also desired that the model considers all possible directions in
cartesian space to the feedrate velocity.

Then, consider initially that the cutting force, definided by equation (18), is rewritten as:

Fc =
b u δ v

w
= fc(δ)v (19)

being explicitly dependent on the cutting depth δ and feedrate velocity v, considered as time variant.
As the magnitude of this force is defined for any feedrate direction, the feedrate velocity v will be represented by the

sum of its components in cartesian space ẋx and ẋy , ie:

v = ẋxcosβ + ẋysinβ, with v = ẋ =
d

dt

[
xx

xy

]
=

[
ẋx

ẋy

]
(20)

where β = tg−1(ẋy/ẋx) is the angle that relates the amplitudes of ẋx and ẋy .
With regards to normal and tangential forces, it will be defined directly related to the cutting force through an angle

α, as can be seen in figure 3:

Ft = Fc cos(α)

Fn = Fc sen(α)
(21)

With these definitions it is possible to represent the cutting force in the coordinate system of the cartesian space, which
is represented by h = [Fx Fy]

T , in terms of components of the feedrate velocity. Such relationships can be found in the
equations (22) and (23) to the concordant and discordant movements, respectively. Figures 3(a) and 3(b) illustrate the
involved vectors.

h =

[
Fx

Fy

]
=

[ −fc(δ) cos(β) cos(α+ β) −fc(δ) sen(β) cos(α + β)
−fc(δ) cos(β) sen(α+ β) −fc(δ) sen(β) sen(α+ β)

] [
ẋx

ẋy

]
= C−

A (δ, β)ẋ (22)

h =

[
Fx

Fy

]
=

[
fc(δ) cos(β) cos(α+ β) fc(δ) sen(β) cos(α + β)
fc(δ) cos(β) sen(α+ β) fc(δ) sen(β) sen(α+ β)

] [
ẋ
ẏ

]
= C+

A (δ, β)ẋ (23)
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Figure 3.

For cases in which β is a multiple of π/2 the force components of the cartesian space will be the propers components
of normal and tangential forces.

For the following mathematical operations are not duplicated, due to the existence of the two movements (concordant
and discordant), the general notation below will be considered:

h =

[
Fx

Fy

]
=

[
CA11(δ, β) CA12(δ, β)
CA21(δ, β) CA22(δ, β)

] [
ẋ
ẏ

]
= CA(δ, β)ẋ. (24)

It is important to note that the matrix CA(δ, β) is a limited matrix for each set of process parameters. In other words,
given the machining conditions, all terms will be limited by trigonometrical functions and the cutting depth limited by the
diameter of the mill. These characteristics are fundamental to the following analysis.

5. Analysis of the impedance control applied in machining task

Consider the set of equations that describe the dynamic of the elastic joint manipulator with the impedance control
action:

Bm
¨̃x+Dm

˙̃x+Kmx̃ = h+BmB̄−1K̄z̃ (25)

¨̃z +KD
˙̃z +KP z̃ = 0 (26)

where

Bm =

[
Bmx 0
0 Bmy

]
, Dm =

[
Dmx 0
0 Dmy

]
and Km =

[
Kmx 0
0 Kmy

]
(27)

are matrices defined according the xy plan of the cartesian space. The matrices KD and KP remain with dimensions
(n× n) while K̄ assumes dimensions (2× n).

Substituting the simplified force model (24), rewritten based on the velocity error ˜̇x = ẋd − ẋ, in (25) yields the
manipulator dynamic equation for the machining task:

Bm
¨̃x+ (Dm + CA(δ, β)) ˙̃x+Kmx̃ = CA(δ, β)ẋd +BmB̄−1K̄z̃ (28)

¨̃z +KD
˙̃z +KP z̃ = 0. (29)

Rearranging these equations in a state space form, as ρ̇ = Aρ+B, where the state vector is given by ρ =
[
˙̃xT x̃T ˙̃zT z̃T

]T
,

the system stability can be concluded based on the eigenvalues of the matrix A:

ρ̇ =

⎡
⎢⎢⎣

−B−1
m (Dm + CA(δ, β)) −B−1

m Km 0 B̄−1K̄
I 0 0 0
0 0 −KD −KP

0 0 I 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
Matriz A

ρ+

⎡
⎢⎢⎣

B−1
m

0
0
0

⎤
⎥⎥⎦

︸ ︷︷ ︸
Matriz B

fesm (30)

where fesm = CA(δ, β)ẋd.
To facilitate the analysis of eigenvalues, consider the matrix A containing the following internal structure:

A =

⎡
⎢⎢⎣

−B−1
m (Dm + CA(δ, β)) −B−1

m Km 0 B̄−1K̄
I 0 0 0
0 0 −KD −KP

0 0 I 0

⎤
⎥⎥⎦ =

[
A1 A12

0 A2

]
. (31)
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It is verified that the matrix A has 4+2n eigenvalues, being 4 eigenvalues from the matrix A 1, relatives to the variables
of the cartesian space, and 2n eigenvalues from the matrix A2, relatives to the rotors subsystem.

The eigenvalues of the matrix A2 are negative for any positive values of KDi and KPi (relatives to the i joint) and are
independent of the process parameters. These eigenvalues are described below:

λ1,2i = −KDi

2
±

√
K2

Di − 4KPi

2
i = 1, 2, ..., n. (32)

The eigenvalues of the matrix A1 are not negatives for all values of gain and are conditioned by the parameters of the
process.

To facilitate the choice of these gains, it is proposed a methodology to obtain the eigenvalues based on the resulting
force orientation. Thus, at the moment that the resulting force is completely on the x x axis, β = −α and β = π − α, the
four eigenvalues and consequently the precondition gains are given by:

λ5,6 = −Dmx + CA11(δ, β)

2Bmx

±
√
(Dmx + CA11(δ, β))2 − 4BmxKmx

2Bmx

(33)

λ7,8 = − Dmy

2Bmy

±
√
D2

my
− 4BmyKmy

2Bmy

(34)

Likewise, for the moment that the resulting force is completely on the x y axis, β = π
2 − α and β = 3π

2 − α:

λ5,6 = − Dmx

2Bmx

±
√
D2

mx − 4BmxKmx

2Bmx

(35)

λ7,8 = −Dmy + CA22(δ, β)

2Bmy

±
√
(Dmy + CA22(δ, β))2 − 4BmyKmy

2Bmy

(36)

Using the elements of CA(δ, β) increased by δ̄ (the maximum cutting depth) and the equations (33) and (36), the
preconditions set is obtained to choose the gains of matrices Bm, Dm and Km that ensure the system stability:

λ5,6 = −Dmx + CA11(δ̄, β)

2Bmx

±
√
(Dmx + CA11(δ̄, β))2 − 4BmxKmx

2Bmx

< 0 (37)

λ7,8 = −Dmy + CA22(δ̄, β)

2Bmy

±
√
(Dmy + CA22(δ̄, β))2 − 4BmyKmy

2Bmy

< 0 (38)

6. Simulation results

The manipulator chosen for the simulation has only two parallel rotational joints (Figure 1(a)). This joint arrangement
provides the robot two degrees of freedom that allows the execution of motion in a cartesian plane. This degree of mobility
is sufficient to accomplish the simulation of the machining task, which will be detailed below, based on the force model
proposed in section 4.

Due to the number of joints, the angular position vectors are composed as q 1 = [q11 q12]
T and q2 = [q21 q22]

T , where
the variables q1i and q2i represent, respectively, the link and the rotor position related to the joint i.

The constructive parameters used in the simulation of the machining task are presented in table 1.

Table 1.

Parameter Value Unit Parameter Value Unit
Links Length 0.25 [m] Reduction 100 [-]

Link 1 Center of Mass 0.118 [m] Rotors Inertia 0.00045 [kg m 2]
Link 2 Center of Mass 0.116 [m] Torsional Constants 100.000 [N/rad]

Link 1 Mass 11.4 [kg] Motors Mass 1.4 [kg]
Link 2 Mass 19.5 [kg] Tool Mass 1 [kg]

Link 1 Inertia 0.23 [kg m2] Tool Inertia 0.1 [kg m2]
Link 2 Inertia 0.16 [kg m2]

The machining task consists in the removal of strips of solder deposited on a planar surface (Figure 4(a)). For purposes
of simplification, the strips of solder, projected on the robot’s work plane, is approximated by a trapezoidal profile with
ripples as illustrated in figure 4(b).
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Figure 4. Strips of solder profile: (a) real and (b) approximated.

Table 2.

Parameter Value Unit
xE0 0.15 [m]

Length 0.25 [m]
Height 10.0 [mm]
λcs 10.0 [mm]
Acs 3.0 [mm]

Table 3.

Item Value Unit
Fd 40.0 [N ]
¯̃y 1.0 [mm]

The values of the surface parameters chosen for the simulation are presented in table 2.
The movement performed by the manipulator consists on a single pass of concordant movement. The manipulator

starts the task from the rest and without contact with the environment. It is considered in the simulation that the surface to
be recovered is aligned to the xx axis, therefore, all the acceleration and velocity references for the controller are restricted
to this axis. In other words, the references of position yd(t), velocity ẏd(t) and acceleration ÿd(t) for the controller are
zero for all time.

It is planned that the moment of contact with the environment is occurred with the tool in a constant feedrate velocity.
Arbitrarily, it is adopted a feedrate velocity of 20 mm/s for the part of contact. Instead of a trapezoidal profile to the
desired velocity, it is planned a smoothed profile that avoid the presence of an unwanted motion due to non-linearities in
the curve of reference, agreeing with the hypothesis of the strategy formulation.

To finish the task planning, two important items must be specified: the level of the desired force F d under which the
tool must be submitted during the pass, and the maximum material height remaining after the pass ¯̃y. These items are
chosen arbitrarily, according to the table 3, and serve both to adjust the tool parameters to generate the expected forces of
reaction as design the controller gains for the task.

6.1 Environment properties and tool parameters

As presented in section 4, the magnitude of the cutting force F c, although expressed in a reduced form by the cutting
depth δ and feedrate velocity v, it depends on the environment and tool features, ie,

Fc =
b u δ v

w
= fc(δ)v. (39)

The parameters related to the tool are simple to obtain, but the same can not be said with respect to the material specific
energy. Because of this, to perform the simulation, the parcel bu/w is indirectly defined based on the desired feedrate
velocity, denoted by vd, and the items Fd and ¯̃y above defined.

From the values of the maximum remaining height ¯̃y and of the profile height, it is possible to obtain the maximum
cutting depth expected:

δ̂ = profile height − ¯̃y = 0.01m− 0.001m = 0.009m. (40)

With the desired feedrate velocity defined as 20 mm/s and the level of the contact force as 40 N , the parcel bu/w,
denoted by the coefficient cA, can be obtained:

Fd =
b u

w
δ̂ vd = cA δ̂ v −→ cA = 2.2222× 105

Ns

m2
. (41)

It is also necessary to define the angle α, shown in section 4.1, which relates the components normal and tangential of
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the cutting force. This parameter is dependent on the constructive aspects of the tool and, for the purpose of simulation,
arbitrarily chosen as 30 degrees.

Finally, from the desired level of contact force and with the definition of the angle α, the magnitude of the expected
force components normal and tangential for the task can be obtained as:

Ftd = Fd cos(α) = 40 cos(30) = 34.6 N

Fnd = Fd sen(α) = 40 sen(30) = 20.0N.
(42)

6.2 Controller gains

To carry out the simulations is adopted a time response of 0.02 seconds for the rotors dynamic, which has proved
enough to non introduce a considered disturbance in the links subsystem. The gains values obtained according the res-
ponse time and adopted to the simulation are presented in table 4.

Table 4.

Gain Value for tr(2%) = 0.02 s
KD1 40000
KD2 40000
KP1 400
KP2 400

Table 5.

Gain Value
Bmx 10
Bmy 10
Dmx 2500
Dmy 2500
Kmx 20000
Kmy 20000

The gains related to the links subsystem, Bm, Dm and Km, are presented in table 5 and are chosen based on the
preconditions obtained from the stability analysis whereas the maximum value is achieved by the elements of the matrix
CA(δ, β).

Simulations results for the machining task are presented in figures 5, 6 and 7 for an ideal case of implementation. In this
situation is considered that all the state variables needed to close the loop control are available by full instrumentation.
In the figures is shown the robot performance for two cases: one consists on the use of an impedance control strategy
based on the robot rigid model (I.C.R.M.) to control an elastic joint robot, and the other one is the proposed strategy that
considers the joints elasticity (I.C.).
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Note that, despite ripples due to strips of solder, the system presents smooth responses to variations on the surface and
all the predetermined criteria are met. The static positioning error caused by elasticity in the joints, that increases directly
with the distance between the end-effector and its base, is compensated and considerably reduced. The results also present
a reduction in the amplitude of the oscillations caused by the strips of solder.

Since the controller strategy compensates the elastic effects, the system performance is strongly affected by impreci-
sions in the elastic constant K . Actually, this parameter is not constant and varies with respect to the payload, as seen,
per example, in harmonic drive manuals. This complementary analysis can be found in Barasuol (2008), where is shown
that, with imprecisions of ±10% in the elastic constant, the system remains stable although it presents positioning errors.

7. Conclusion

The results obtained by simulation shows the effectiveness of the cascade design for elastic joint manipulators and
verify the methodology used to choose the controller gains, held on the preconditions obtained by the stability analysis of
the system. By using the proposed simplified force model for stability analysis, it was observed that the system stability
is related to the Dm gain. This conclusion makes such gain the primordial adjust for the impedance controller to ensure a
security task.

8. References

Barasuol, V. (2008). Controle de Força Indireto para Manipuladores com Transmissões Flexíveis Empregados em Tarefas
de Esmerilhamento. Master Thesis, Federal University of Santa Catarina.

Benallegue, M. (1991). Contribution à la Commande Dynamique Adaptative des Robots Manipulateurs Rapides. Doctoral
Thesis, Universite Paris, France.

Chen, S.-C. and Tung, P.-C. (2000). Trajectory planning for automated robotic deburring on an unknown geometry. Int J
Mach Tools Manuf, Vol. pp. 957-78.

Ferretti, G., Magnani, G. A. and Rocco, P., "Impedance control for elastic joint industrial manipulators", IEEE Transac-
tions of Robotics and Automation, vol. 20, no. 3, pp. 488-498, 2004.

Jiang, Z.-H., "Impedance control of flexible robot arms with parametric uncertainties", Journal of Intelligent and Robotic
Systems, vol. 42, pp. 113-133, 2005.

Kim, C., Chung, J. H., and Hong, D. (2007). Coordination control of an active pneumatic deburring tool. Robotics and
Computer-Integrated Manufacturing, Vol. pp. 462-471.

Pires, F. N. and Afonso, G. (2007). Force control experiments for industrial applications: a test case using an industrial
deburring example. Assembly Automation, Vol. 27, No. 2, pp. 148-156.

Radford, J. (1980). Production engineering technology. McMillan Press.
Readman, M. C. (1994). Flexible Joint Robots. Mechatronics. CRC Press.
Spong, M. W. (1987). Modeling and control of elastic joint robots. J. of Dynamic Systems, Measurements, and Control,

Vol. 109, No. 4, pp. 310-319.
Sugita, S., Itaya, I., and Takeuchi, Y. (2004). Development of robot teaching support devices to automate deburring and

finishing works in casting. Int J Adv Manuf Technol, Vol. pp. 183-9.
Ziliani, G., Visioli, A., and Legnani, G. (2005). A mechatronic design for robotic deburring. IEEE ISIE 2005, Vol. pp.

1575-1580.
Ziliani, G., Visioli, A., and Legnani, G. (2007). A mechatronic approach for robotic deburring. Mechatronics, Vol. pp.

432-441.

9. Responsibility notice

The author(s) is (are) the only responsible for the printed material included in this paper.

ABCM Symposium Series in Mechatronics - Vol. 4 - pp.179-188
Copyright © 2010 by ABCM


