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Abstract. The dynamic behavior of a flexible structure is similar to fluid moving (known as doshing) in liquid-
propellant rocket motors, subjected to external efforts. Thus, modeling and identification of flexible modes are similar
to sloshing modes. This paper presents results from modeling using Bond-Graphs (State-Space equations and Transfer
Functions) applied to an angular position servo and flexible beam used on Flexible Link FLEXCAM Quanser System,
as well as results from identification process using ARX model. On first step, only angular servo position is tested,
input/output time histories are recorded and submitted to identification process. As second step, the flexible structure is
fixed to hub and new input/output data are collected to perform new identification with the previous model obtained on
first step. The sampling frequency and a pseudo-random binary sequence (PRBS) input are discussed against
previously measures of time constants and three mode frequencies. The complete model obtained from match and

identification process is presented, useful to flexible mode control designs, e. g., LQR,H_and PID strategies. The

natural frequencies and damping ratios are used to design and validate a compensated inverse PID controller to damp
flexible modes.
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1. INTRODUCTION

The modeling and identification of a dynamic systgtant) is an interactive process necessary taiolst model
with good reliability. The Flexible Link FLEXCAM Qanser System is a very useful equipment to pertaisy and so
is presented in details. The transfer functiorhefhub is modeled using Bond-Graphs and its caeffis are identified
using parametric identification (ARX). The nextsis the modeling and identification of the flextdtructure, where
the Hamilton’s Principle is used to derive the dmues of motion. The Bond-Graphs are developed predented
based on these equtions of motion. Specific prograre used to produce the overall transfer funciio such way,
that presents the hub and flexible dynamics. Thalt® and models obtained are thus used to dediigital controller
presented in Barbosa and Goes (2007).

2. THE FLEXCAM QUANSER SYSTEM

The Quanser System is presented in Fig. 1, usedlithate control strategies to Brazilian Vehiclaedigde Launcher
(VLS), placed at Hybrid Simulation Laboratory (Ldp8f Institute of Aeronautics and Space (CTA-IAE).

The flexible structure (flexible link) is a uniforftexible beam mounted on the rotating servo p{anb). The light
source is attached to the tip of the beam whiaetscted by a camera mounted to the rotating béke.hardware and
equipments of Quanser System consists of a UnivBsaer Module and a terminal board data acquisitidhe hub is
used to rotary motion experiments and consists DCamotor mounted with a gearbox. The terminal dred Multiq
boards perform the analogic to digital and diditednalogic conversion (A/D, D/A).

The software used to developing, compiling and edggm digital control consists on the Simulink,dR&ime
Workshop, Watcom C++ compiler and the WinCon cdigroThe WinCon is a realtime program that perferthe
digital controller and can perform sampling freqeies less than 200Hz (T = 5ms). The figures a®Wolshow the
typical blocks used in Simulink toolbox, as clodedp control system. It can be used, with few mdifons, to
operate in opened or closed loops.



Figure 1. (a) The FLECAM Quanser System (b) Hulmera and flexible beam
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Figure 2. Typical blocks used in Simulink toolbox.

The camera output is an analog signal which is qutigmal to the relative deflection of the lightusoe from the
central axis. The linear displacement y (measuré¢roéiip deflection) corresponds to a linear vottagutput. The

system parameters are presented in Table 1.

Table 1 — System parameters.

Actuator (Hub SRV-02) Flexible Link
Parameter Numerical value Parameter Numerical value

Motor torque constant, kt 0.00767 N.m/A  Positiensor gain 0.39 V/cm
Motor torque constant, km 0.00767 Vird.s Link ripiody inertia 0.0042 kg.m
Armature resistence 2.6 Ohm Link mass 0.06 kg
Armature inductance 0.18 mH Link thickness 0.8 mm
Gear ratio 14:1 Link height 0.02m
Sensitivity 0.0284 V/deg Link length 0.425m
Armature inertia 3.87 e-7 kg’m | Link mass 0.06 kg




3. HUB MODELING AND IDENTIFICATION PROCESS

The Figure 3a shows the mechanical and electrgralia while Fig. 3b shows the hub Bond-Graphs.
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Figure 3. (a) Hub mechanical and electric diagrach @) Hub Bond-Graphs

The symbolic state space equation and transfertitmevere obtained quickly from the augmented B@rdphs.
Thus, the model to be identified from the inputtage €, (t) to the angular displacemeé’(t) is presented below.

ofs) _ 1
E.(s) (as?+bs)

@

The input-output data were used to identificatiomcpss of the hub dynamics. It was defireegriori, the sampling
frequency f=200Hz (typical bandwith for this seliga?20 Hz). The auto-regressive with exogenous inARX model,
was used to identify the hub system parameters AR¥(na,nb,nk) is

A@)Y, = B(a)q ™y, + & )

A(Q) =1+aq  +a,q” +..+a,q "

B(a) =b, +bq™ +b,q* +..+b,q™

y(k) =-ay(k-1)-a,y(k-1)-..-a,y(k—na) +bu(k -1) + b, u(k - nb) + v (k)
f=[-a,-a,..—a,bb,.b,]" y=X8+v

-1
0= LT y= QT X) LT y LT = Moore-Penrose Pseudo-inverse Matrix

The results encountered using input-output timeohiess recorded from tests into ARX model, are

&(s)= o(s) _ 3778

E.(s) s(s+424) ©

The Figure 4 shows the output response from tewlstlze output response obtained from a simulatsigguthe
model identified with the same input excitation.



Teta(deg) versus time: test data (black) and model response (red)
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Figure 4. Output time histories comparison
The manufacturer indicates poleg =0 and S, [1-42, so the identification is coherent.

4. FLEXIBLE BEAM MODELING AND IDENTIFICATION PROCES S

The Figure 5 shows the physical system, consigsting hub rotating around z-axis with a cantilevefiedible
appendage (beam). The pinned-free boundary conditice assumed.
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Figure 5. Uniform beam, hub and variables definiio

The equations of motion to the flexible beam argved using the classical application of Hamilto®snciple,
considering the Euler-Bernoulli assumptions. Tltlas,Lagrangian with kinetic and potenctial enerdgges

1 . 1k -\2 1% 0%y
L, =T-V==1,6°+=|ply+x8) dx-=|El| — [dx 4
) Sl 2lp(y ) 2! (axz @
The work performed on the system by the appliedueris

W, =716+ TM (5)
(0%



where 6y(0,t)/6x is the angular displacement of the beam»or 0. Applying the Hamilton’s principle:

th (Lg +W,, )dt =0 (6)

4

and inserting an additional load due to the comstrotstoring torque applied to the beam at the aXisotation,
according to Barbosa (2001) and Garcia and Inm881(l we obtain:

a4y .. e 1
El a7+,oy+,ox6’ =710'(0)
(7a,b)

L
(1, +IB)9+I,oxydx=r
0

with the boundary conditions:

a2y _ 0%y a°y

El—2 -r=0, L, -0 El—| =0 El— =0
aXZ o y|X—0 aXZ - 6X3 .
(Balancing torque) (linear displacement) (bendimgment) (shearing force)

The solution to flexible displacement of the begims assumed using a separation of variableglks\vs.
n

y(x.t)=> a(x)n () ®)
i=1

where N is the number of flexible modes included in thedelp and//; are the modal coordinates. The solution to the

angular displacement is assumed as follows, corisgléhe modal amplitudes to the beam rotationaencent ©,
according to Soares (1997).

e(t>=geim () ©

Substituting Equation (9) into Eq. (7b) we obtain:

o &
O, =———— | xgadx (10)
()]

The expressions of Equations (8) and (9) are ieddrt the forced Eqg. (7a) and then, we multiplyhetezm byql)j
and integrate with respect to x from x=0 to x=Lnddly, using the orthogonality property of the msdee obtain:

m7j; +kin, =1¢,'(0) (11)
with the coefficients
4

L L L
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The Bond-Graph for a beam with force-free boundamyditions is thus linked to the Bond-Graph devetbjo the
hub and presented in Fig. 6.
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Figure 6. Fully augmented Bond-graph model of teey& plant and flexible beam

The eigenfunctions and corresponding eigenvaluestems to pinned-free boundary conditions are goresl as
follow.

a(x)=A msin(q L)+sinh(a, L)} tan(a L) =tanh(a,L) (12)

The symbolic transfer functiorG(s), from input voltagee, (t) to the end of the beany(L,t), is obtained

developing the conversion on the state space emqsdtiased on the fully augmented Bond-Graph maetelwn in Fig.
6. The & order model to be identified is:

()= Y(Ls)_ as +as'+as +a,s" +as+a

13
E,.(s) bss®+bs®+b,s" +b,s’+b,s* +bs+b, -

where the poles are associated to the frequeneiprdtions due to first, second and third modesetting the system
parameters presented in Table 1, in the symbalitster function, Eq. (13), we obtain:

-3.8e-015 s”5 - 4.91e-005 s™4 + 3.8e-013 s"3 - 0.0117 s"2 + 2.28e-012 s - 0.85

Y(L,s)/Ein(s) =
s"6 + 1.07e-005 s"5 + 320.699 s™4 + 0.002999 s"3 + 16848.25 s"2 + 0.116 s + 84534.2

The frequency response function is plotted in FigThe zeros, poles and frequencies associatedoanpiled in
Table 2.



Bode Diagram
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Figure 7. Frequency response function

Table 2 — Zeros, poles and frequencies associated.

Zeros poles
5 zeros (rd/s) 6 poles (1/s) frequency (Hz)
-1.3e+10 -0.0+2.4i 0.38 Hz
-2.5+11.2i -0.0+7.7i 1.23 Hz
25+11.2i -0.0+16.0i 2.55 Hz

The frequencies associated to the first, secondrardimodes of vibration can be used to desigriipeontrollers
using different strategies.

5. RESULTS COMPARISION
The Figure 8 shows the output autospectrum andFghows the Frequency Response Function (FRF)nebta

from two tests. It can be observed that the fastond and third frequencies are coherent. TheeTabhows the results
obtained from three ways: nonparametric, autospecand FRF from tests.



FFT of output signals deflection
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Figure 9. FRF from tests
T mode
0.38 Hz (2.39 rd/s)

Table 3 — Frequencies of vibrations comparision

Methods
Nonparametric
Autospectrum
FRF from tests

The Table 3 presents the frequencies and a corgrafiem methods.



7. RECOMMENDATIONS

During the use of FLEXCAM is recommended the canteraligned in directions that do not have souigietd,
because this can mask the signals. Frequentlycammended the calibration to the FLEXCAM to obttie actual
camera gain. The sample period shall be choseasaas the dominant poles (4 to 20 times due t@kagnfrequency)
to be considered or to identification process. Dest flexible models depend on equipment used.tt®o,use of
precision equipment (dynamic analyzer) is recomradnd/erify the cables on the back side of the FLBXA they
must be free in such way that does not hold thetirif movement of the servo SRV-02.

The choice of location to the source light mustdmme with care, because it can superimpose two snotle

vibration. In Miu (1991) If the location of the sensor is exactly at the node, a, will be identically zero and the resulting

transfer zero will superimpose on the second system pole. This pole-zero cancellation has the simple physical meaning
that the second mode has become unobservable’.

8. CONCLUSIONS

The main conclusion in this work is that the idéati models are coherent and can be used to dasigntroller to
the flexible beam. The ARX model with no polarizeignals produced results with quickly convergeridas work
presented the modeling and identification of a fieaible plant, via practical results, useful texible control designs.
Barbosa and Goées (2007) presents a digital coatrtddsed on these results and shows good atteguatirthe
amplitude of vibration, during its movement to aided angular position.

The FLEXCAM Quanser System was fundamental to tleelaling and identification process, as can be ieerif
along this work. The flexibility of using Simulinidatlab on this test bed is very interesting to gtaehd identify
flexible structures.
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