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Abstract. Experimental verification of structural vibrations control strategies is essential for eventual full-scale 
implementations. However, few researchers have facilities readily available to them that are capable of even small-
scale structural control experiments. Appropriately constructed bench-scale models can be used to study important 
aspects of full-scale structural vibrations control implementations, including: control-structure interaction, actuator 
and sensor dynamics, states feedback design, control spillover, etc. In this sense, the purpose of this article is the 
project of H∞ controller with output feedback using linear matrix inequalities (LMIs) for vibration attenuation in a 
flexible building like structure. The considered structure is manufactured by Quanser Consulting Inc., and it is 
controlled by an active mass driver (AMD). The structure consists of a steel frame with a controllable mass located at 
the top, which can be configured to have either 1 or 2 floors. In this paper, a 2-floor configuration is employed. The 
actual experiment considered herein is an effective way to deal with challenges associated with active control of 
flexible structures.  
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1. INTRODUCTION 

 
Experimental investigations are essential to obtain a fundamental understanding of many phenomena. However, 

when physical systems are scaled down to a size appropriate for laboratory study, salient features of their behavior may 
be lost. This is particularly true for large civil engineering structures (Battaini, et al., 1998). In the area of control of 
civil structures, it is well-recognized that experimental verification of control strategies is necessary to focus research 
efforts in the most promising directions (Housner, et al. 1994a,b). However, few researchers have experimental 
facilities readily available to them that are capable of even small-scale structural control experiments. Consequently, the 
majority of control studies to date have been analytical in nature, a substantial number may have employed models that 
lacked important features of the physical problem. One such phenomena that has been neglected for many years is the 
control-structure interaction (CSI). Through a series of analytical and experimental studies, Dyke, et al. (1995) 
recognized that understanding CSI was key to developing acceleration feedback control strategies and showed that 
accounting for CSI is fundamental to achieving high performance controllers. 

A variety of techniques have been intensively studied to reduce the structural vibration in order to achieve high-
speed and high-precision motions (Singer and Seering, 1989). Recent development in microelectronics and smart 
structure techniques have provided new solutions for vibration control (Clark et al.,1998). “Smart structures” adopt 
microprocessors and distributed transducers to modify structural dynamics to actively suppress vibration in time-
varying working environments. Use of smart structure techniques can lead to lightweight structures, leading to higher 
performance. 

There are many robust techniques well know in the structural control literature to outline these problems. In this 
research work, we have chosen a recent technique involving linear matrix inequalities (LMI). The LMI contributed to 
overcome many difficulties in control design. In the last decade, the LMI has been used to solve many problems that 
until then was unfeasible through others methodologies, (Boyd et al., 1994). 

The major advantage of LMI design is to enable specifications as stability degree requirements, decay rate, input 
limitation on the actuators and output peak bounder. It is also possible to assume that the model parameters can involve 
uncertainties. The LMI is a very useful tool for problems with constraints, where the parameters are in a range of 
values.  

Once formulated in terms of an LMI a problem can be solved efficiently by convex optimization algorithms, for 
example, using interior-point methods, (Gahinet et al., 1995). Only a few researchers explore the use of LMI in the 
structural control community. Sana and Rao (2000) utilized a cantilever beam with a distributed pieozoelectric actuator 
and sensor to design an output feedback controller to increase damping of some modes using LMI. However, the 
resulting matrix inequalities involved a bilinear matrix inequalities (BMI) in unknown variables and, hence, it became a 
non convex optimization problem. So, the BMI could not be solved directly using a standard convex optimization 
software package. In this case, it was necessary to use iterative methods, as for instance, the cone complementarily 
linearization algorithm (El Ghaoui, 1997), which is a high cost procedure. 
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In another way, Gonçalves et al. (2002) controlled a two degree-of-freedom (2DOF) mechanical system comparing 
the H2 and H∞ optimal control with state-feedback via LMI, in a procedure of solution proposed by Peres (1997). 
Gonçalves et al. (2003a) and (2003b) simulated a state-feedback synthesis using classical LMI, described in Boyd et al. 
(1994), considering norm-bound linear differential inclusions (LDI) for a 2DOF mechanical system and for a fixed-
fixed aluminium beam, respectively. 

The design of H∞ output feedback control laws that meet desired performance and/or robustness specifications is an 
active research area of the control community for several decades. The cost functions used in H∞ control are very 
general and can directly include performance specifications, disturbance rejection specifications, control input 
magnitude limitations and robustness requirements. The strength of this design methodology is the generality of the cost 
function (Carvalhal and Lopes Jr., 2005). In this work, the problem of H∞ output feedback control is solved by convex 
optimization and is written through LMI for control vibration in a bench-scale structure. The model structure employed 
in the experiment represents a building controlled by an active mass driver (AMD) and consists of a steel frame with a 
controllable mass located at the top, as illustrated in Fig1.  

 
2. EXPERIMENTAL SETUP 

 
The equipment used for the active control experiment consisted of (see Figs.1 and 2): 
Structure: The structural specimen, manufacutured by Quanser Consulting Inc., is a model of a flexible building, 

which can be configured to have either 1 or 2 floors. Herein, a 2-floor configuration of the model is employed. The 
interstorey height is 490 mm, with each column being steel with a section of 1.75 x 108 mm. The total mass of the 
structure is 3.5 kg, where the first floor mass is 1.16 kg, the second floor mass is 1.38 kg, and the mass of each column 
is 0.24 kg. The structure has the natural frequencies of 1.7 Hz and 5.1 Hz which have corresponding damping ratios of 
0.013 and 0.062 respectively. 

 

 
Figure 1: Bench-Scale Building Model 

 



 

 
 

Figure 2: Experimental Set-Up 
 

Active Mass Driver (AMD): The AMD provides the control force to the structure. As shown in Fig. 3, it consists of 
a moving cart with a DC motor that drives the cart along a geared rack. The maximum stroke is ± 95 mm and the total 
moving mass is 0.65 Kg. 

 

 
Figure 3: Active Mass Driver (AMD) 

 
Sensors: Each floor of the building structure is equipped witch a capacitive DC accelerometer with full scale range 

of ± 5 g and sensitivity of 9.81 m/s2/V (i.e. 1g/V). It consists of a single-chip accelerometer with signal conditioning. 
The cart position is directly measured using an optical encoder whose shaft meshes with the track via an additional 
pinion. It offers a high resolution of 4096 counts per revolution and sensibility of 2.275E-5 m/count. 

Digital Controller: Digital control is achieved by use of the MultiQ - PCI board with the WinCon real time 
controller. The controller is developed using SIMULINK (1997) and executed in real time using WinCon. This board 
has a 14-bit analog/digital (A/D) and 13-bit digital/analog (D/A) converters with four and sixteen outputs and inputs 
analog channels, respectively. The SIMULINK code is automatically converted to C code and interfaced through the 
Wincon software to run the control algorithm on the CPU of the PC. 

Computer: The computer used is a Pentium IV 2.8 GHz configured with 1 GB of RAM and 40 MB of Hard Disc. 
Shaker Table I: This system is used to excite the flexible modes of the structure and can be used to simulate 

earthquakes and evaluate the performance of active mass driver. The system consists of a high torque direct motor that 
can drive a 5 Kg mass at 1g (i.e. 9.81 m/s2). Maximum travel is ± 2 cm.  

 
 
 
 



3. STATE-SPACE MODEL 
 

For small floor deflection angles, both floors are modelled as standard linear spring-mass systems, as represented in 
Figure 2. The linear stiffness constants for both floors, Kf1 and Kf2, for small angular structure oscillations, are 500 N/m. 
In the presented modelling approach, the structure viscous damping coefficients, Bf1 and Bf2, are neglected. The 
Lagrange's method is used to obtain the dynamic model of the system. In this approach, the inputs to the system are 
considered to be the ground acceleration, 

gX (t)  , and the driving force of the linear motorized cart , Fc(t). 
In order to design and implement a state-feedback controller for the system, a state-space representation needs to be 

derived. Moreover, it is reminded that state-space matrices, by definition, represent a set of linear differential equations 
that describe the system's dynamics. The following relationships represent the state space model: 

 
d

(t) = (t) + (t) + (t)
dt 1 2x Ax B w B u             (1) 

 
(t) = (t) + (t) y Cx Du              (2) 

 
where A is the dynamic matrix, B1 is the matrix of disturbance, B2  is the matrix of control input, C is the output matrix, 
D is the feed-through matrix, w(t) is the vector of disturbance input, u(t) is the vector of control input, y(t) is the output 
vector and x(t) is the system's state vector. In practice, x(t) is often chosen to include the generalized coordinates as well 
as their first-order time derivatives. In our case, x(t) is defined such that its transpose is as follows:  

 

[ ]T
c f1 f2 c f1 f2(t)= x (t)  x (t)  x (t)  x (t)  x (t)  x (t) x           (3) 

 
where xc(t) is the cart linear position relative to the second floor, xf1(t) is the first floor linear deflection relative to the 
ground and xf2(t) is the second floor linear deflection relative to the first floor.  

Furthermore, it is reminded that the system's measured output vector is:  
 

[ ]T
c f1 f2(t)= x (t)    x (t)  x (t) y             (4) 

 
Also in Equation (1), the input u(t) is set in a first time to be Fc(t). Thus, we have:  
 

(t) = (t)cu F                (5) 
 

where Fc(t) can be expressed by: 
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where Kg is the cart planetary gearbox gear ratio, Kt is the cart motor torque constant, Km is the cart back electromotive 
force constant, Vm is the cart motor armature voltage, Rm is the cart motor armature resistance and rmp is the cart motor 
pinion radius.  

According to the system’s state space representation defined by equations (1), (2), (3) and (4), the equations of 
motion are obtained as Santos (2007): 
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where Mf1 is the first floor mass, Mf2 is the second floor mass and Mc is the cart mass. 
 
Taking into account equation (6) in order to convert force (Fc(t)) to voltage input (Vm(t)) and using the model 

parameter values provided in User Manual the state space matrices A, B1, B2, C and D result to be as follows: 
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4. H∞ OUTPUT FEEDBACK CONTROL BY LMI APPROACH 

 
A standard form of a general feedback system is given by Fig. 4, where w is the exogenous vector, z is the regulated 

output vector, y is the measurement output signal used to feedback the system, K is the output feedback controller and u 
is the signal of control. 

 

 
Figure 4: Standard Form Design in the Focuses Convex Optimization.  

 
Mathematically, the general model is given by: 

 

zw zu

yw yu
= = 

P Pz w w
P

P Py u u
⎡ ⎤⎧ ⎫ ⎧ ⎫ ⎧ ⎫

⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥
⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎣ ⎦

          (8) 

 
Where Pzw, Pzu, Pyw and Pyu are the transfer functions matrices from the inputs to the outputs, as indicated by their 

subscripts. 
The main goal is remain the vector z small face to disturbances w. The classical H∞ theory can be used to solve this 

problem, (Burl, 1999) or (Moreira et al., 1999). 
In the convex domain, the closed-loop system has the following transfer function (here, I is the identity matrix),  
 

-1
zw zw zu uy yw= + ( - )H P P K I P K P           (9) 

 
Problem: Find an output controller K such that: 
 

zw < H λ
∞

            (10) 

 
where λ is the cost of the design. The infinity norms above are related with the maximum gain for any transfer function, 
(Burl, 1999).  

In the present paper only the performance problem is considered. The augmented plant model that includes the 
performance is show in Fig. 5, (Moreira, 1998). 

 



 
Figure 5: Augmented Plant for Performance Problem Used to Design the Controller. 

 
where Gc is the transfer function of system and Gd is relative to disturbance input. There are two regulated outputs, u’ 
and y’, the weighting control and measured signal respectively. The signal u’ refers to the control energy constraint and 
the signal y’ is related to the increase in damping.  

To achieve the desired specification, weighting function Wy and a gain Ku are used to shape the regulated outputs. 
The weighting function Wy is typically a pass-low function in the frequency domain to enforce an increase in the 
closed-loop damping of the system. The gain Ku is selected to restrict the control signal level, and hence limit power 
consumption. This is detailed, for example, in Moreira, 1998. 

The augmented plant of Eq. (8) has the following matrix functions, 
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with w = w and z = [u’ y’]T. Substituting Eq. (11) into Eq. (9), the closed-loop matrix of the system becomes,  
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where, from the definition of the sensitivity and energy restriction functions, S and U, respectively (Moreira et al., 
1999), we have the definitions,  
 

-1 -1

-1

 =  + (  - ) = (  - )

 =  ( )
c c c

c

S I G K I G K I G K

U K I - G K
          (13) 

 
This augmented plant was solved using toolbox LMI from Matlab with aid from sconnect command, (Gahinet et al., 

1995). The H∞ problem, Eq. (10), was solved using the command hinflmi, which applies convex optimization technique, 
(Gahinet et al., 1995) and (Gahinet and Apkarian, 1994). 
 
5. EXPERIMENTAL APPLICATION 

 
Reponses in the Frequency Domain  
 
In this section, it was used the following configurations to verify the proposed methodology. The first step is to 

choose the Wy filter as a second order function with cut-off frequency between the first and the second natural modes. 
The Wy filter parameters were obtained by adjustment, in order to have a good performance. The value of the gain used 
was specified as Ku= 0.00599 to limit the energy restriction function. The cost of the design was λ= 0.02. The transfer 
function is given by: 

 

4.799s 96.16s
994.7

2 ++
=yW  

 
Figure 6 shows the singular value plot of this function. 
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Figure 6: Weighting Function for the Sensibility Function. 

 
The closed-loop response (FRF between disturbance input w and measured output signal y) of this system in 

frequency domain is shown in Fig. 7. There is suitable amplitude attenuation in the two modes. The performance 
characteristics of the resulting controller are shown in Fig. 8. The specification given by Eq. (10) is reached, because the 
sensitivity function is limited by the inverse of filter Wy (Moreira, 1998), as shown in Fig. 8a.  
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Figure 7: FRF of the Controlled and Uncontrolled Response. 

 
When the system is controlled, the open loop value of the first mode attenuation reaches 0.9 dB. While, for the 

second mode an attenuation of 14.9 dB is achieved.  
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Figure 8: Design Performance. 



 
Another important point can be understood by Fig. 8b; the large peaks correspond to low frequency modes, it means 

that input control signal is distributed in the two first modes. 
 
Reponses in the Time Domain  
 
Figs. 9 and 10 shows the acceleration of the first floor and of the second floor of the bench–scale structure shown in 

Fig.1, respectively, when excited by ground acceleration shown in Fig. 12. Figure 11 shows the control force applied by 
the actuator. 
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Figure 9: Acceleration of First Floor 
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Figure 10: Acceleration of Second Floor 
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Figure 11: Control Force 
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Figure 12: Ground Acceleration 

 
6. CONCLUSION 

 
The study of algorithms for active vibrations control in flexible structures became an area of enormous interest, 

mainly due to the countless demands of an optimal performance of mechanical systems as aircraft, aerospace and 
automotive structures. Smart structures, formed by a structure base, coupled with actuators and sensor are capable to 
guarantee the conditions demanded through the application of several types of controllers. 
This paper is addressed to explore the abilities of LMI approach in the design of controllers. An H∞ output feedback 
control strategy was used actively to control the two modes of a bench-scale structure that represent a flexible building 
like structure. Once formulated in terms of LMI a problem can be solved efficiently by convex optimization algorithms. 
The experimental application showed that the vibration attenuation reaches 0.9 dB and 14.9 dB for the first and second 
modes, respectively. This paper showed that H∞controller, solved through LMI and considering only the performance 
problem, can reduce structural vibration appropriately.  
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