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STATE CONTROL OF A WATER HYDRAULIC ACTUATOR
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Abstract. This paper presents the control of a water hydraulic actuator. Freemenviroment point of view, water
hydraulic actuators present some advantages when compared to their paustevith oil. In this work, the water
hydraulic actuator is represented by a third order linear modet \&itpole at origin and two lightly damped poles.
Aiming to study the control of this kind of actuator, some idalssontrol techniques and the control in the state space
are discussed. A state controller is designed by assigningch gele locations. Considering that not all state variable
are measured, one designs a state observer. The system regfibnparametric uncertainties is analyzed. In the
sequence, one analyzes the closed-loop stability when the velottiicceleration are obtained by using filtering and
time derivative. Simulation results illustrate the main charastics of the proposed controllers.
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1. INTRODUCTION

In the last few decades, the development and the techcall@glvance have represented an important role in the
society. Speaking about industries, the automation isyaiwgortant subject. Currently, most industries havéheir
production line a great number of automatic equipmentsntlaée possible an increase of productivity, economy of
costs, and execution of tasks that offer risks to workenneSof these automatic machines use positioning systems,
which are driven by actuators: hydraulic, pneumatielectric. The hydraulic actuators are very importanémwhreat
forces need to be generated. Normally, the oil hydradiuators are employed. The main reason is th&niheledge
of the technology has not been god enough to handle hegsyyes of low viscosity fluids with reasonable price
(Verronen, 2000). However, there is an increase in the stuaister hydraulic actuators.

Water hydraulic actuators present some advantages vamepaced to oil hydraulic actuators, such that: a clean
work environment; a solution of low risk, mainly whehere are explosion and fire risk; the water does niotago
additives; the cost of the water is very low; easy maariee; easy availability to find water; lesser loss eSgure in
the system for not needing lubrication; accidentaldgek are not dangerous to the people and the process; lgeneral
the ventilation of the engine is not necessary; theenot cause negative impact to the environment. ©wtther hand,
they present some drawbacks: the price of the equipmeeatyisigh; the knowledge in water hydraulic is very dmal
corrosion problems exist, therefore the water presariow index of lubrication; the cavitation is anotbarrier. To
minimize the problem of the corrosion, materialshwiaw coefficient of corrosion are used in the manufactfrthe
equipment used in the hydraulic system. A suitable conmibmaf polymers and metals or ceramics has been @ goo
solution to reduce the friction and thereby the fatiguarw®ydberg, 2000). The cavitations cause effect aesiois
vibrations, reduction of the efficiency and erosidnislcaused by the impact of the air bubbles of the fiuithe
material of the equipment, consuming it.

In positioning applications, it is desired to control thelraulic actuator so that it executes a task with opéchi
time and precision. Inside of this context, the presemk\was as objective to be a first study of these worltlsaas in
the area of control of water hydraulic actuators. Tdes is to reach, in future papers, at the same levéheof
development that has been done for algorithms to contriey@iaulic actuators, like in Cunha (2001, 2005) and Cunha
et al. (2002, 2004).

This paper is divided as follows. Section 2 presents treadi water hydraulic actuator mathematical model. In
section 3, the classical control of the water hydcaattuator is discussed. Section 4 approaches thepfasement
control. In section 5, a state observer is designectidh 6 deals with the case where the velocity aedlaation are
obtained by using a time derivative and filtering. Inisec?, one presents the conclusions.

2.LINEAR WATER HYDRAULIC ACTUATOR MATHEMATICAL MODEL

The water hydraulic actuator under consideration mspased of a cylinder of double-action and single rod. iEhis
driven by a four-way directional valve that allows cofitng the piston movements in both directions. Althoulge
hydraulic actuator is a nonlinear system, its modelbmaapproximated with good results as a third order lisygsiem
relating the control input and the piston position

The use of a third order linear model for representipdraulic actuators has been used by many authors in the
literature, for instance Paim (1997) where some daksontrollers were designed and Guenther and De Pieri (1997)
where a cascade controller was designed. In Makinen (200 ter hydraulic actuator was approximated by
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whereY(s)is the Laplace transform of the output (position ofeéhd of the cylinder rod)J(s) is the Laplace transform
of the input (voltage applied to the electronic carld), is a hydraulic constanty, is the not damped natural

frequency.
By using experimental tests, Makinen (2001) obtained thewly parameters with a mass m = 850 Kg:
Kg =00Im/sV, w, =180rad /sand J, =0. 1 Substituting these values into Eq. (1), one has
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Remark 1- Makinen (2001) also modeled the friction forces andevabnlinearities. Here, as the goal is to study
the control of the system with a state controlamsidering the parametric uncertainties and the usetat@aabserver
or time derivative to obtain velocity and acceleratisunch nonlinearities will not be considered. Furthermategn
considering the nonlinearities, it is possible to usem@inear controller to cancel these nonlineariliies in Cunha et
al. (2004).

Steps with two different setpoints were used in Makinen (28®Merify the closed loop performance of the
controllers. One from 0.275 m to 0.280 m and other fro2%@n to 0.280 m. Here, in the simulations, these two
trajectories are also used, one called short trajeatod the other called long trajectory. An input satanatvith limits
of -10V and +10V was also included in the simulations.

3. CLASSICAL CONTROL OF THE WATER HYDRAULIC ACTUATOR

Classical control of oil hydraulic actuators has dertratexd to be inefficient when high performances asiree.
The same analysis is valid to water hydraulic actsafbhe system linear model presents one pole at onigirtveo
complex poles lightly damped (see the root locus in Fignlhis way, PID controllers do not modify substalhy the
poles location and, consequently, do not alter the clsga performance significantly (Cunha, 2001). In the next
section, a state controller is designed to changerib@al poles location.
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Figure 1 — Root Locus
4. POLE PLACEMENT CONTROL

Defining x; as the piston positior; as the piston velocity and as the piston acceleration, Eq. (2) can be written in
the state form ag = Ax + Bu,y = Cx, where A is the system matrix, b is the input madrig c is the output matrix:

X, 0 1 0 || (1) 0
X, =0 0 1 | x,(t)|+] O |u
Xq 0 -32400 -36| x,(t)| |324 (3)



x(t)
y=[L 0 0 %)
Xs(t)
In this section, one considers that all system statiables are available for measuring. In order &@@larbitrarily
all system poles, it is necessary that the systdoe tmntrollable. Calculating the controllability matione obtains

0 0 324
M= 0 324  -11664 )
324 -11664 -1007769

As the rank of the controllability matrix in Eqg. (4)3sthe system is completely controllable and can itaveoles
placed arbitrarily. After verify the controllabilitgne defines the control signal as

u=-Kx+v (5)
whereK is the state feedback matrix amds the new control input.

Substituting Eqg. (5) into the system equation, gives

x=(A-BK)+Bv (6)
y =Cx

The poles were chosen to be placedsjr=—-  ,100=-300and x4, = Q The new root locus is given by Fig.2.
The characteristic equation with poles new locationvsrgby

@)= A +4004% +300001 (7)

The next step is to find out the state feedback mathexe, theK matrix is calculated by using the Ackermann
formula (Ogata, 2003). To apply the Ackermann formula, sit necessary to calculatef A), given by

AA)=A +a, A’ +a,A +a,l . Thus,
0 -2400 364
@ A)=|0 -11793600 -15504 (8)
0 502329600 -1123545
Then, the state feedback matrix is given by
k=[o o 1B AB A%B['@(A)=[0 -7.4074 1.123§ (9)
The control law is chosen as a proportional law= K e.
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Figure 2. Root locus with the poles at new location

Figures 3 and 4 show the closed loop system response wetigned state controller. One can observe that the
control signal saturates in both cases. But it lasi®rtime when the long trajectory is required.
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Figure 3 — Short Trajectory: position, error, andtoarsignal
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Figure 4 — Long trajectory: position, error, and cohsignal

5. STATE OBSERVER

In the previous section, one supposed that all staiebles were available to measure. Normally, ongeasor to
measure the position is used. Then, an alternative isse¢oa state observer. A state observer is an &igotiat
estimates the state variable by measuring the output @ndotiirol variables. Here, the state observer isl tise
estimate the velocity and acceleration signals.

The observer mathematical model is given by

%X=(A-K_C)x+Bu+K.y (10)
where X is the estimated stat€x is the estimated output, aKd is the observer gain matrix.
The estimation error vector is the difference betwibe state real value and the estimates obtain#uehybserver:

e=X-X (11)
Calculating the time derivative of Eq. (1@&= x— X, one has
e=(A-K.Ck (12)

By Eq. (12), one concludes that if the eigenvalues ofithieix (A—-K_C) are stable thea will converge to zero
regardless of the initial error.

The first step is to ckeck if the system is observdblean be done by calculating the observability mathat is
given by

cl1Tl10o0
o=|cal=lo 1 0 (13)
ca| lo o 1

As rank(O) = 3, then the system is completely obséevdlne next step is to find out the state observer raimnix
K,. By using the Ackermann formula, one has

c 1o (14)
K.=@A) CA| |0
CA| |1
It is necessary to choose the state observer pdes: Must be chosen two or five times faster than teeesy
dominants poles. Choosing the observer poleg,at— , QG -700 and y, = — 80tand applying the Ackermann
formula, gives
K, =[2064 1353296 22040774¥ (12)

Figures 5-8 present the simulation results that allowtoreompare the real variables with the observemestd
variables.
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Figure 5 - Comparison between position, velocity acekleration (blue lines) and the corresponding obser
estimated values (red dashed line) — short trajectory
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Figure 6 Comparison between position, velocity andlect#on (blue lines) and the corresponding observer asttima
values (red dashed line) — long trajectory
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Figure 6 — Position error: short and long trajeet®ri

Analyzing Figs. 5 and 6, one concludes that the erroreirestimates were very small. In order to check therefise
convergence, one supposes different initial conditionthienobserver and in the actuator. The initial positiothe
observer is set as 0.26 m. Figures 7-11 illustrate thiat&n.
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Figure 7 - Comparison between position, velocity acckeleration (blue lines) and the correspondingroles
estimated values (red dashed line) — short trajectory
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Figure 8 - Comparison between position, velocity aockeleration (blue lines) and the correspondingrebse
estimated values (red dashed line) — long trajectory
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Figure 9 - Position error: short and long trajeie®r
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Figure 10 — Position, velocity and accelerationnastion errors — short trajectory
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Figure 11 — Position, velocity and acceleration rarrdong trajectory

The simulations confirm that the errors vector cogeao zero regardless of the initial values. In ordererify the
robustness of the designed controller with relatiorpasametric uncertainties, system errors are includethe
simulations. Initially, one supposes a variation of 20%nértot damped natural frequency valag Y.
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Figure 12 - Comparison between position, velocity acakleration (blue lines) and the corresponding observer
estimated values (red dashed line) — short trajectory
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Figure 13 - Comparison between position, velocity acakleration (blue lines) and the corresponding observer
estimated values (red dashed line) — long trajectory
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Figure 14 - Position error: short and long trajeet®ri
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Figure 15 - Position, velocity and accelerationneation errors — short trajectory
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Figure 16 - Position, velocity and acceleratioroesrlong trajectory

Analyzing the simulation results (Figs. 12-16), oneizealthat the parametric uncertainty in the not dampéd &l
frequency does not cause significant errors in the varigsigsated by the observer. The next step is to simalate

parametric uncertainty i ,, . Figures 17 to 21 present the result for a paramateertainty of 20% i , .
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Figure 17 - Comparison between position, velocity acakleration (blue lines) and the corresponding observer
estimated values (red dashed line) — short trajectory
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estimated values (red dashed line) — long trajectory
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Figure 19 - Position error: short and long trajectrie
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Figure 20 - Position, velocity and accelerationneation errors — short trajectory
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Figure 21 - Position, velocity and accelerationnestion errors — long trajectory

Analyzing the simulation results (Figs. 17-21), one zealithat parametric uncertainty in the paramgtgr causes

a significant error in the estimated state variallesieans that changes K, will take to significant errors in the
observed variables during a considerable time until theezgence to zero.

6. OBTAINING VELOCITY AND ACCELERATION BY USING FILTERING AND TIME DERIVATIVE

In many applications the velocity and accelerationaigwre obtained by filtering and doing the time derivative of
the position signal. The use of filter is necessary tduthe noise that comes from sensors and could takentiee
derivative to have some spikes. Normally, the adjustroktite filter bandwidth is done by increasing the valuthef
cut frequency up to an acceptable quantity of noise with@usicg actuator vibration. However, as the theoretical
analysis when with elaborated controllers in the@tbloop is very difficulty, the sense in adjust therfittendwidth is
more intuitive than based on the equations under analysis.



In this work, as one is dealing with a simple controllleis theoretical analysis is presented. The anglysisented
in the sequence do not have a specific goal on wateablclactuators, but to make people of the control ar#airtk
about the implication of designing a controller by ussoge signal and implementing the controllers by obtaitkieg
signals by using numerical time derivative.

The first step to analyze the stability of the closmaplsystem is to rewrite the system adding two staiablas:
velocity and acceleration obtained trough numericaé tderivative. In this way, the new state model I $tate
variables: x, - piston position;x, - piston velocity; x, - piston accelerationx, velocity obtained through filtering and

derivative; X, acceleration obtained through filtering and derivative. Stite equation can be written as

x 1 [o 1 0 0 oTfx]T[o %,
x| [0 0 1 0 0 |x||o X,
X,|=|0 -32400 -36 0 0 |x,|+|324lu, y(t)=[1 0 0 0 0] x,
X, 0 P, 0 -p; 0 |x, 0 X,
%| |0 P 0 -pf -P x| |0 | X,

wherepy is th;a filter bandwidth. Here, one analyzes the clésepl system in two different situations: ()= 100 rad/s;
(i) ps= 30 rad/s.

(i) pr= 100 rad/s
In this case, the closed loop eigenvalues &re , A0=096+ 207,594, =096-207,59j, A, =-203,76 and

A; =-34,16. One concludes that the closed loop system presentsdies in the right-plane. Thus, the use of these
filters bandwidth makes the closed loop system unstable.

(i) pr= 30 rad/s

With this filter the closed loop poles are located ie tmalf-left plane, in the following locationsd, = ,0
A, =-14,24+ 180,30, A, =-14,24+180,30j, A, =-51,48 and A, =-16,03. The root locus is showed in Fig. 22 and
the system response is showed in Fig. 23.
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Figure 23 - Position with a filter of 30 rad/s

The advantage of the use of time derivative and filteringpbtain the velocity and acceleration signal in retato
the use of a state observer is that it does not depenitheorsystem previous knowledge. However, as it was



demonstrated in these two examples, it can degrade $itensyesponse and can inclusive to take the system to
instability.

7. CONCLUSIONS

This paper presented a first study of these work’scasitabout the control of water hydraulic actuatorss Bhildy
was based on a%3order linear model of a water hydraulic actuator. Tlassital control applied to the system was
discussed. A state controller and a state observerprepesed. The closed loop system with the state contaolie
observer presented some robustness when subject to paramegitainties. An analysis of the closed loop system
with the state controller and using the signals of ¥Bl@nd acceleration obtained by filtering and doing the enical
time derivative was done. The system became unstabledlageon the filter bandwidth. This is an interesting result
because in this case it was possible to do a theoretnzgdysis that is not possible with more elaborated alontr
algorithm.

Future work involves the inclusion of the friction fescand valve nonlinearities in the model and the dpwednt
of new controllers to compensate such nonlinearities.
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