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Abstract. Traction control is a critical aspect of mobile robots that need to traverse rough terrain, avoiding excessive 
slip – which may cause the terrain to collapse locally and trap the robot wheels – and guaranteeing an adequate 
trajectory and speed control while reducing the power requirements. Traction control of all-wheel-drive robots in 
rough terrain was originally motivated by space exploration, such as in the case of the Mars Exploration Rovers. 
However, such technology is also needed in our planet, in particular in the Amazon region. This is the case of the 
Hybrid Environmental Robot (HER), a 4-wheel-drive mobile robot with independent suspension under development at 
CENPES/PETROBRAS, which is susceptible to changing terrain conditions, facing slippery soil and steep slopes. In 
this work, a new traction control scheme is proposed to allow the HER to maintain a desired velocity while minimizing 
power requirements and slippage, and avoiding motor saturation and loss of wheel contact. Simulations are performed 
for rough terrain conditions with 2D-profile, considering the general case of different tire-terrain contact angles at 
each wheel. It is found that the control scheme is able to access in real time the ideal torques required by each 
independent wheel to maintain the desired speed, even in uneven steep terrain, with minimum power consumption. 
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1. INTRODUCTION 
 

Since 1988 PETROBRAS explores petroleum in Urucu (AM), in the middle of the Amazonian forest. The Urucu 
plant is the largest Natural Gas Unit in Brazil (UPGN3), with a production of more than six million cubic meters of 
natural gas per day (Santos, 2007). To safely distribute this production, PETROBRAS is building two gas pipelines, 
Coari-Manaus (420km long) and Urucu-Porto Velho (550km long). In addition, PETROBRAS is developing a series of 
robots in the Robotics Laboratory at CENPES to monitor these almost 1000km of pipelines. 

Among the robots being developed, there is the Hybrid Environmental Robot (HER), which will be used in the 
monitoring and data collection of the environment nearby the pipelines. Due to the several types of soils, obstacles and 
rough terrain that the HER may face in its missions, it is indispensable to have an appropriate traction control that 
makes it possible to traverse obstacles safely, avoiding wheel slippage and minimizing the power consumption. 

The development of traction control for rough terrain has been motivated in the last years, mainly, for space 
applications (Balaram, 2000). Traction control presents a great number of research works applied to passenger vehicles 
moving in planar roads (Anwar, 2003). A technique very used by the automotive industry is ABS (Anti-lock Braking 
System), which consists of using the information of the sliding of each wheel to correct its speed, minimizing skidding 
(Sakai et al., 1999). Methods based on the ABS system can be derived to be used in the control of mobile robot systems 
used in space applications (rovers) in rough terrain. However, such methods don’t take into account the kinematics and 
the physical model of the robot, being in this way limited when used in very rough terrain. In addition, the speeds are 
only altered when the sliding has already happened, therefore the system reacts with a certain delay, generating errors in 
the robot’s location in special if dead reckoning is used. 

In Lamon and Siegwart (2005) a method is presented that proposes the minimization of the ratio between the 
traction and normal forces at each wheel, which are measured with sensors installed at the wheel, to prevent sliding. 
This method has the advantage of not requiring the knowledge of the soil characteristics and of the robot’s speed. Good 
results were obtained in simulations, however practical experiments were not performed to validate the proposed 
approach in real situations. In addition, this approach has the inconvenience of the high cost and complexity of the 
required wheels. 

There are also models that are based on obtaining a certain value of optimal sliding (Scr) between the wheels and the 
soil in order to maximize traction force. The value of Scr depends on the combination of tire/soil, varying considerably 
for different combinations (Caltabiano et al., 2004). Among the inconveniences of this approach are: the hypothesis of 
the wheel being flexible and the soil rigid, the need for the knowledge of Scr for each combination of tire/soil, and the 
need to know the speed of the vehicle and the normal forces acting at each wheel. Burg and Blazevic (1997) presented 
an approach based on an estimate of Scr that doesn’t use the knowledge of the soil characteristics, however it is only 
valid for flat terrain and it is very susceptible to errors due to variations in the terrain or due to robot’s vibrations. 
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Iagnemma and Dubowsky (2004) presented a traction control method for rough terrain that is not based on torque 
distribution systems nor on measures of sliding of the wheels. It just uses the properties of the soil and of its geometry 
to obtain the contact angle between the wheels and the ground. Using this information, the method optimizes the torque 
at each wheel with the intention of obtaining maximum traction or minimum power consumption, depending on the 
local level of difficulty/traversability of the terrain. The method presented good results in simulations and in 
experiments. 

The present work presents a traction control scheme for mobile robots in rough terrain that also uses the contact 
angles between the wheels and the ground. The proposed method, differently from Iagnemma’s approach, explicitly 
considers the robot’s dynamic model, including flexible suspensions. It is able to control a desired speed Vd along the 
longitudinal axis of the robot’s chassis, avoiding motor saturation, wheel slip and dynamic instability. In some cases, 
the control can also minimize the mechanical power required by the robotic system, without the need for heuristically 
classifying terrains into “easy” or “difficult” as needed in Iagnemma and Dubowsky (2004). 

The control methodology is explicitly developed for the 2D case with a generic rough terrain. In the next section, the 
dynamic model of a 2D mobile robot is presented considering flexible independent suspensions. 

 
2. ANALYTICAL MODELS FOR THE ROBOT AND TERRAIN 

 
The following system model assumes the hypotheses: rigid wheels and soil, inertia of the vehicle concentrated in its 

center of mass, negligible suspension and wheel inertia compared to the robot chassis’, and flexible independent 
suspensions (modeled as spring-damper systems). 
 
2.1. Terrain model and wheel contact angles 

 
The terrain profile must be provided to the robot, which can be accomplished e.g. using stereo camera systems. The 

terrain profile curve is modeled as a function formed by the union of discrete (xi, yi) points, see Fig. 1. The spacing of 
these points along the x (horizontal) axis is constant and equal to dx. The coordinate y will be a function of x, in other 
words, yi = f(xi).  

 
Figure 1. Discrete model of the terrain profile, and associated centers curve 

 
To help in the calculation of the wheel contact point with the terrain at each state of the robotic vehicle, a new curve 

is generated, denominated centers curve. This curve is the geometric locus of the center of a rigid wheel with a known 
radius r when it is rolled along keeping contact with the terrain. The points (xcc, ycc) of the centers curve, shown in Fig. 
1, are generated from the terrain profile points. For each point (xi, yi) of the terrain, the point (xcc, ycc), belonging to the 
line perpendicular to the tangent to the terrain profile and above the terrain at a distance r from the contact point, is 
calculated, see Fig. 2. Except for a few special degenerate cases where an appropriate mathematical handling must be 
performed (Silva, 2007), the centers curve for the terrain profile can be expressed as the union of (xcc, g(xcc)) points. In 
other words, the centers curve is a function, and each of its points can be associated to a point (xi, yi) of the terrain 
profile. Thus, to calculate the contact point between a wheel and the terrain, it will be enough to know the coordinates 
of the center of this wheel, find the closest match in the discretized centers curve, and then correlate it to the terrain 
profile points, which will be the wheel-terrain contact point. The contact angle γi, defined as the angle between the 
tangent to the terrain profile and the horizontal at the contact point of wheel i (i = 1 for the rear wheel and i = 2 for the 
front one) is then obtained from the discrete derivative of (xi, yi), see Fig. 2. 

 



 

 
 

Figure 2. Schematics showing how to obtain the points (xcc, ycc) of the centers curve and the wheel-terrain contact 
angles γi from the terrain profile and wheel radius r 

 
2.2. Dynamic equations of movement 

 
Figure 3 shows a schematic representation of the robot to be analyzed. In this figure, c is the damping coefficient of 

the robot’s suspension, K its stiffness, C = (xc, yc) is center of mass of the robot, C1 = (xc1, yc1) and C2 = (xc2, yc2) are the 
geometric centers of wheels 1 (rear) and 2 (front), and ξ1 and ξ2 are the displacements of the suspensions of wheels 1 
and 2, respectively. The distance between the wheel centers and the robot center along a line normal to the robot 
chassis, when the suspension is relaxed, is h = h1 = h2.  

 

 
 

Figure 3. 2D Model of the mobile robot with independent suspensions 
 

From the free body diagram of the robot chassis shown in Fig. 4, and applying Newton-Euler’s equations, then 
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where m is the total mass and I the moment of inertia of the robot,  is the rate of the displacement in suspension i in 
the direction normal to the robot chassis, F

iξ
ri is the internal reaction force of suspension i onto the chassis in its 

longitudinal direction, P is the system weight, and α is the slope angle of the chassis with respect to the x axis. 
 



 

 
 

Figure 4. Free body diagrams of the robot chassis and wheel i 
 

The free body diagram of each wheel i (i = 1, 2) is also shown above. Neglecting the wheel inertia, Newton-Euler’s 
equations result in 
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where Ni and Fi are the normal and friction forces between the robot’s wheel i and the terrain, Ti is the input torque at 
wheel i provided by its motor, and γi is the contact angle between the wheel i and the terrain. 

From Eqs. (4) and (5), the values of Ni and Fri can be obtained, resulting in 
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Substituting the above equations into Eqs. (1-3), then 
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The values of ξi and  are calculated from the current system state (iξ αα ,,,,, cccc yxyx ) and from the coordinates 

of the center of wheel i, (xci, yci), which are known from the terrain profile, resulting in 
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where  is the velocity vector of the center of wheel i. T

cici yx ],[



 

Since the inertia of the wheels and suspensions is neglected, the suspension can never suffer elongation. Thus, Eqs. 
(12-13) are only valid if ξi < 0, with the suspension i under compression, otherwise . Thus, whenever Eq. 
(13) is valid, then the velocity components of the center of wheel i will be related by 
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The speed of the center of wheel i in the longitudinal direction to the chassis is 
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Substituting Eqs. (16-17) into Eq. (15) and using Eq. (14), 
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Substituting Eqs. (18-19) into Eq. (11) it is possible to obtain  as a function of the current system state and the 

coordinates of the center of wheel i, 
iξ
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The deformations and rates of deformation of the suspensions of both wheels can be then obtained from Eqs. (12) 

and (20). Substituting these values into Eqs. (9-11) above, it can be seen that the system accelerations will be a function 
of only the friction forces acting between the wheels and the terrain (F1 and F2, which are controllable from the motor 
torques) and of other known variables. These forces can then be chosen at each time step to optimize a given system 
characteristics, which will be addressed next. 

 
3. THE PROPOSED TRACTION CONTROL 

 
The proposed traction control scheme has the objective to provide wheel torques that will let the robot surpass 

obstacles in rough terrain while keeping a constant desired speed Vd of its center of mass in the longitudinal direction to 
the chassis. The control must also guarantee contact of all wheels to the ground and avoid slippage and motor 
saturation. If more than one combination of motor torques is able to accomplish the above requirements, then the 
proposed control will also find the solution that minimizes the system power consumption. The control technique is 
described next. 
 
3.1. Calculation of the acceptable wheel traction forces 

 
The control methodology first searches for motor torques that can generate appropriate traction (friction) forces F1 

and F2, at the same time avoiding motor saturation, slippage and loss of wheel contact. These conditions can be written 
through the following inequalities:  

a) |F1| ≤ Fsat1, to avoid saturation of the motor of wheel 1, where Fsat1 is the motor saturation torque divided by r; 
b) |F2| ≤ Fsat2, to avoid saturation of the motor of wheel 2; 
c) N1 > 0, condition for wheel 1 not to lose ground contact; 
d) N2 > 0, condition for wheel 2 not to lose ground contact; 
e) |F1| ≤ µ ⋅ N1, to avoid wheel 1 slippage, where µ is the wheel-terrain static friction coefficient; and 
f) |F2| ≤ µ ⋅ N2, to avoid wheel 2 slippage. 
Substituting i = 1, 2 into Eq. (7), then conditions c) and d) result in:  



 

1 1
1 1 1

1

( K c )N F tan( ) 0
cos( )
⋅ξ + ⋅ξ

= ⋅ γ −α + >
γ −α

  and  2 2
2 2 2

2

( K c )N F tan( )
cos( )
⋅ξ + ⋅ξ 0= ⋅ γ −α + >
γ −α

               (21) 

It can be seen that, for a given system state, all conditions above are bounded by vertical or horizontal lines in the F1 
× F2 plane. Therefore, the intersection of all regions above can only result in either a rectangular region D or an empty 
set, see Fig. 5. 

 
 

Figure 5. Region D is the locus of the possible (F1, F2) combinations that satisfy all conditions a) through f) 
  

3.2. Speed control law 
 

One of the objectives of the proposed control is to guarantee that the speed VL of the robot’s center of mass along the 
longitudinal direction to the chassis is equal to a desired speed Vd, therefore it is desired that 
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The longitudinal velocity VL can be calculated at an instant tf from its value 0VL at an initial instant t0 and the 

acceleration aL(t) of the center of mass in the longitudinal direction 
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The acceleration aL can be controlled through the wheel torques, which in turn control the wheel-terrain friction 

forces. Being a first order system, as seen in Eq. (23), proportional control is satisfactory. Considering a proportional 
gain Kp for the error between the desired and actual longitudinal speeds, the following control law is proposed: 

 
L p d La : K (V V )= ⋅ −                        (24) 

 
The acceleration aL can be calculated from the center of mass acceleration components and the angle α, 
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From Eqs. (9-10), the acceleration aL can be written as a function of the friction forces F1 and F2 and of parameters 

η1, η2 and a0 which are known for a given state, 
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Eqs. (24-26) result in: 
 

1 1 2 2 p d L 0F F K (V V )⋅ + ⋅ = ⋅ − −η η                      (31) 
 

The values of F1 and F2 that satisfy the above equation will generate a straight line S in the F1 × F2 plane. This line 
represents all combinations of friction forces that are able to perform speed control for a desired Vd. Thus, the 
intersection set Γ between the region D and the straight line S will return all possible combinations that, besides 
controlling the robot speed, satisfy all conditions a) through f) described before. 

When Γ is an empty set (i.e. S does not cross region D), then the proposed technique won’t be able to perform speed 
control without violating the conditions, which are more important since they’re related to the system integrity. In this 
case, the control algorithm looks for the point P = (F1, F2) inside region D that will lead to the acceleration ae closest to 
the desired value aL from Eq. (24), see Fig. 6(a). Since iso-acceleration lines in the F1 × F2 plane are always straight 
lines, as seen from Eq. (26), one of the vertices of the rectangle D will always be the closest point to the external iso-
acceleration line associated with aL. It is then enough to calculate the longitudinal accelerations associated to the four 
vertices of D, and choose the one closest to aL, e.g. the point P in Fig. 6(a). 

 

                   
 

Figure 6. (a) Point P closest to S when Γ is empty and (b) definition of the Γ set in the F1 × F2 plane 
 
On the other hand, if Γ is not empty, then it will be either a vertex from D or a straight line segment P1-P2, see Fig. 

6(b). In the latter case, there will be infinite points (F1, F2) ∈ Γ that could be chosen to control the robot’s longitudinal 
velocity guaranteeing conditions a) through f). Another optimization criterion can then be used to choose a point in Γ. 
The minimization of the robot power consumption is chosen in this work, as described next. 

 
3.3. Minimization of the system power consumption 

 
The power dissipated by the wheel motors can be divided into two parts, one due to the mechanical output work at 

the motor shaft, and another due to power losses (such as in the Joule effect in DC motors). Assuming that the motor 
efficiency is high (e.g. a DC motor with low internal electric resistance and low no-load currents), then the second part 
is neglected, resulting in a total required power for both wheels 

 
2211 ωω ⋅+⋅= TTPT                         (32) 

 
where Ti is the output torque at wheel i, in N⋅m, and ωi its angular velocity, in rad/s. The above expression assumes that 
the robot does not have regenerative braking, i.e., it does not recover energy from the braking process (which, however, 
would be possible when using DC motors, as the batteries could be recharged when Ti and ωi have opposite signs). 

Assuming no slip between the wheels and motor shafts (due to clutches, e.g.), and neglecting the wheel inertia, then 
Ti is equal to the friction force Fi multiplied by the wheel radius r. Also, assuming the proposed control won’t allow 
wheel slip, then |ωi| is equal to the speed |Vci| of the center of wheel i divided by r. Equation (32) becomes 
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For a desired longitudinal speed Vd of the robot center of mass, the speeds of the wheel centers can be calculated by 
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From Eqs. (33-34), the total power required by the system is a function of the parameters ∇1 and ∇2, which are 

constant for a given system state and desired speed, and of the friction forces F1 and F2
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From Eq. (35), the locus of the points with same power in the F1 × F2 plane would have a diamond shape, centered 

at the origin. Therefore, the power consumption minimization problem could be geometrically regarded as finding the 
smallest diamond that would intersect with the segment Γ. Clearly, there are four basic cases: the intersection point that 
minimizes power could be point P1, P2, or the intersection of Γ with the F1 axis or with the F2 axis, see Fig. 7. 

 

 
 

Figure 7. Intersection points between Γ and the smallest iso-power diamond for the 4 basic cases 
 
Note that if Γ is parallel to any side of the diamond, then there may be an infinite number of solutions. But, in any 

case, at least one of the solutions shown in Fig. 7 is valid. Thus it is enough for the algorithm to calculate the power at 
points P1, P2, and at the intersection of Γ with the F1 and F2 axes (if it intersects either axis), and choose the solution 
that results in minimum power. The resulting optimized F1 and F2 values are used to calculate the associated wheel 
torques, which are then commanded to the motors. In this way, the robot is able to control its speed in rough terrain 
while guaranteeing wheel-terrain contact and avoiding slippage and motor saturation, minimizing power consumption 
when possible. In the next section, the proposed approach is verified through simulations. 
 
4. RESULTS 
 

Simulations are performed using real parameters taken from the second prototype of the Hybrid Environmental 
Robot (HER), namely m = 120kg, I = 15.22kg⋅m2, Fsat1 = Fsat2 = 320N, r = 0.3m, L1 = L2 = 0.7m, h1 = h2 = 0.125m, K = 
105N/m and c = 4.8⋅103kg/s. Also, g = 9.8m/s2, and the wheel-terrain friction coefficient is assumed as µ = 0.5.  

The proposed control is compared with traditional velocity control (TVC) with gravity compensation. TVC assumes 
that the terrain below the wheels is approximately flat, therefore the wheel-terrain contact angles are equal to the chassis 
angle, γ1 = γ2 = α. In this special case, Eq. (31) would become 

 
1 2 p d LF F m K (V V ) P sin+ = ⋅ ⋅ − + ⋅ α                      (37) 

 
Note that, on an ideal flat terrain, only the sum of the friction forces F1 and F2 matters, not their individual values (as 

long as such values do not cause slippage, motor saturation or loss of wheel contact, which are not modeled in the 



 

TVC). TVC then distributes evenly the torque to both motors, resulting in the same forces F1 and F2. The TVC law with 
gravity compensation is then 

1 2 : [ ( ) sin ]/ 2p d LF F m K V V P= = ⋅ ⋅ − + ⋅ α                     (38) 
 
The same proportional gain Kp is used for the proposed traction control and for the TVC, providing a fair 

comparison. In fact, Eqs. (37-38) prove that both control techniques should result in the same response for flat terrains 
with small slopes. 

Figure 8 shows the terrain profiles considered in the simulations. All simulations assume zero initial robot velocity. 
For the flat terrain simulation, Kp is chosen as 490s−1. This gain value is found appropriate for several terrains with 
average 30 degree slopes. Higher values could be used without compromising the validity of the simulations, because 
motor saturation is included in the model. For the rough terrain simulation, which has higher slopes as seen in Fig. 8(b), 
the gain is doubled, i.e. Kp is chosen as 980s−1. An estimate of the highest expected slopes in the terrain is useful to 
calibrate Kp, however if this information is not available then it can be estimated from the maximum slope the robot 
would be able to climb without tipping over. 

 
(a) (b) 

Figure 8. Terrain profiles used in simulations for: (a) flat terrain; (b) rough terrain. 
 

The results for the flat terrain simulations are shown in Fig. 9. This figure shows the robot’s longitudinal speed from 
traction control and TVC. The proposed traction control performs much better than TVC, settling to the desired speed 
Vd = 1m/s in less than 1s instead of more than 4s. 

 

 
 

Figure 9. Longitudinal speed of the robot on flat terrain with traction control and with TVC 
 

The results for the rough terrain simulations are shown in Fig. 10. This figure shows the robot’s longitudinal speed 
from traction control and TVC. The advantages of the proposed traction control can be clearly seen, settling to the 



 

desired speed Vd = 1m/s in approximately 0.5s, without oscillations. TVC, on the other hand, doesn’t converge to Vd, 
presenting oscillations with high overshoot (approximately 40%) excited by the wavy terrain profile. Note that even 
gravity compensation is not enough in the TVC to avoid such oscillations, because of the hypothesis of flat terrain (γ1 = 
γ2 = α) used in this compensation. Indeed, it can be clearly seen in Fig. 8(b) that the slope α of the robot chassis can be 
very different from the wheel-terrain contact angles γ1 and γ2 as the vehicle moves along the wavy path. 

 

 
Figure 10. Longitudinal speed of the robot on rough terrain with traction control and with TVC 

 
5. CONCLUSIONS 
 

In this work, a novel traction control methodology was proposed to achieve desired speeds in rough terrain, while 
guaranteeing wheel-terrain contact and avoiding slippage and motor saturation. When possible, power consumption was 
also minimized. The methodology explicitly considers the different contact angles at each wheel and the dynamic 
interaction between the vehicle and the terrain. Simulations demonstrated the effectiveness of the proposed traction 
control for flat and rough terrain, managing to reach the desired speeds much faster than traditional velocity control 
techniques with gravity compensation under similar conditions. The proposed approach converges with low power 
requirements even for very rough terrain, where traditional techniques aren’t able to effectively control the robot speed. 
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