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Abstract. This work presents an AI/planning method for autonomous intelligent agents, named ALWAYSTRX, that 
handles external events in the planning phase, different from the existing planning methods. An intelligent 
manufacturing system, a robot or some other form of actuator with a control structure that can execute an action plan, 
collect information about the environment and use automated reasoning techniques about its perception and about 
what action to be done, can be called intelligent agent. Planning with external events makes possible reasoning about 
what action to execute, dealing with eventual world state changes that may occur during a mission. World state 
changes are obtained by the planner through the sensory system. The ALWAYSTRX method integrates planning with the 
control system, using an unique knowledge representation, where the plan being generated specify the actions to be 
taken and the external events to be observed. Among the heuristics used by the ALWAYSTRX method to expand and 
search in the planning tree, are the weights assigned to the occurrence of the possible external events that may happen 
in a given world state. With these characteristics, the ALWAYSTRX method is an effort to use planning systems in real 
world applications, typically complex, dynamic and with real-time restrictions. This method was implemented using C 
language and an adaptation of RETE match algorithm was designed to increase the planner performance. 
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1. Introduction  
 

Intelligent and Integrated Automation became one of the most studied areas inside the field of General Automation 
(mainly in areas such as manufacturing, agriculture, transport, medical care, domotics, military, space, etc.) because one 
of its goals is to make the design-product process with a high degree of integration and automation during all of its 
lifetime cycle. 

Automated reasoning techniques can increase the productivity and the flexibility of design-product cycle operation. 
A great problem in automated reasoning is to design systems that can find automatically a set of actions (or a plan) that 
allow an agent to change the environment (called world) from a initial state to a desired state (goal state). 

This plan could be delivered, for example, to a manufacturing system, a robot, or any kind of actuator that, 
following the plan, execute the actions and make the world change to the desired goal state. In Artificial Intelligence 
terminology the plan executor is called generically agent. 

Therefore an intelligent manufacturing system, a robot or some other form of actuator with a control structure that 
can execute an action plan, collect information about the environment and use automated reasoning techniques about its 
perception and about what action to be done, can be called intelligent agent (Maes, 1991)(Russell, 1995). 

Section 2 presents the planning problem complexity in real world applications and some systems already developed 
partially solving the problem. In Section 3 the ALWAYSTRX method is fully described, including definitions, the 
planning and execution modules with its algorithms and the implementation of the system with RETE algorithm 
adaptation. Finally Section 4 shows the final considerations and bibliographic references. 
 
2. Problem complexity and related work 
 

The first automatic planning system was created in the end of sixties and at that time many suppositions were made to 
decrease the complexity of the problem. One of those suppositions was the belief that the agent is the only element that can 
change the world. Another supposition was considering that the world changes are totally deterministic. 

At that time the planning problem was to create techniques and heuristics to search in a tree of possible plans to achieve 
a desired goal. The complexity of this problem was analyzed years later and considered NP-Complete and NP-Hard 
(Noreils, 1995)(Erol, 1995). 

Those suppositions early presented, together with some others, allowed the development of planning systems that create 
a action plan and when this plan is executed by an agent, the world is changed from its initial state to a goal state. 

However, mainly due to the two suppositions cited, these planning systems were not adequate to applications in complex 
environments due to uncertainty and dynamics inherent to the real world. In many domains, like manufacturing systems, 
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mobile robots, software agents, inspection, maintenance, surveillance, etc., the world state is changed by multiple agents and 
if the planner consider that it and only it can change the world, the resulting action plan will not represent the reality and the 
execution of this plan will be incompatible with the world where the agent is inserted. The agent is not the only element that 
can make changes in the world and it must use its perception resources to adequate the plan to the eventual contingencies 
during the plan execution. 

Beyond the dynamics and unpredictability of the environment, the agent owns sensors and actuators that do not work in 
an ideal way and the time available for decisions is very limited. The knowledge base of the agent is incomplete and the 
planning systems must consider these aspects to make possible agent interaction in unstructured environments. 

Early work integrating planning and execution like STRIPS/PLANEX (Fikes, 1971a)(Fikes, 1971b), Universal Plans  
(Schoppers, 1987), IPEM (Allen, 1990), BUMP (Olawsky, 1990), XII (Golden, 1994), SIPE-2/PRS-CL (Wilkins, 1988 
(Georgeff, 1988) e SAGE (Knoblock, 1995), as well early works in planning with incomplete information like UCPOP 
(Penberthy, 1992), BURIDAN and C-BURIDAN (Kushmeric, 1995), among others, had been collaborated to the 
development of planning systems but partially solve the problem of plan in dynamic and unstructured environments because 
they do not consider, altogether, the aspects early presented. More detailed discussions can be seen in (Ash and Dabija, 
2000). 

Researches in planning systems that handle external events have been developed by our planning group since the 
eighties. Among the systems developed are: the PETRUS system (Rillo, 1988), EXTEPS (Rillo, 1992), PBE (Lopes, 1998) 
and finally, the ALWAYSTRX, in its early research stage being presented in this paper. The ALWAYSTRX method is an effort 
to create systems that can effectively plan in complex, dynamic and unstructured real world domains. 
 
3. ALWAYSTRX method  
 

The ALWAYSTRX method (ALWAYS Thinking, Reacting and eXecuting) was designed to integrate the agent’s 
planning task and execution task, including the external events treatment inside the planning phase, to give to the agent 
reactivity capabilities to the dynamic world changes in which it is inserted. 

The integration approach requires that planning decisions followed by execution must be based in a common knowledge 
representation. 

With ALWAYSTRX the planning system integration with the plan execution system considers that planning must be done 
concurrently with plan execution (the plan is made “on the fly”). The plan being created by the planner is represented by a 
tree where the nodes mean activities and events. Each path in the tree represents a sequence of activities with events that 
may occur. One path must be followed by the execution module. While the planner creates new paths, the execution module 
chooses one of these paths to execute, based on the actual occurrence of the external events associated with the chosen 
activities. 

The planning system uses the information about which external events actually happened, obtained from the 
environment through the execution module, to adequate the paths to the real world state. As the execution module executes 
one step of the plan, the paths of the search tree not associated to the path that contains this step are excluded from the tree. 
One plan step means to observe the occurrence of an external event and initiate the execution of the correspondent activity. 
When a event occurs, the planner keep expanding paths below this event in the tree and exclude the paths that do not go 
through this event. 

The ALWAYSTRX is domain independent and can be used in many engineering and automation applications such as 
intelligent manufacturing. 

Figure 1 presents how the method is inserted in the context “see, think, act” and its internal architecture that consist of 
two modules running concurrently: the planning module and the execution module. Both modules constantly communicate 
through a common knowledge base. 
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Figure 1. (a) ALWAYSTRX method in the context “see, think, act”; (b) ALWAYSTRX method’s internal architecture. 
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As the planning module generates the plan, the paths are stored in the knowledge base. The execution module reads the 
knowledge base and follows the plan to be executed. As the execution module works, the activity being executed and all the 
information about which external events are happening are stored in the knowledge base. The information stored by 
execution module in the knowledge base is used by the planning module in order to keep synthesizing the plan paths with 
updated world information. 
 
3.1. Concepts and Definitions  
 

The definition of operator, event and world state follow the classic planning nomenclature (STRIPS) (Allen, 1990) with 
the addition of knowledge representation and the needed elements to make possible the treatment of external events as well 
the integration of the planning system with the execution control system. Below, some definitions used by ALWAYSTRX  are 
presented. 

An operator is defined as: 
A generic activity with parameters (not instantiated), that represents one class of activities to be developed by the 

agent. 
The instantiation of the operator’s parameters represents a specific activity. For example, the operator move(object, from-

place, to-place) represents a generic activity in which a agent moves any object from a from-place to a  to-place. The 
parameters object, from-place and to-place are not instantiated variables. When variables are instantiated with, for example, 
green-box, position12 and position27, respectively, the operator become an activity given by move(green-box, position12, 
position27). 

One activity may be made of none, one or more actions, increasing the STRIP operator coverage that considers an 
instantiated operator as a unique action. There are cases that the agent must not execute any action and stay in a wait state 
until an event occurs. This case is considered in the ALWAYSTRX operator. 

The actions to be executed by ALWAYSTRX system are, by definition, of two kinds: impulsive actions and continuous 
actions. The impulsive actions are executed instantly by the agent and finish. For example increment(variableN). The 
continuous actions represent tasks of repetitive or continuous cycles, as for example, follow(corridor2). ALWAYSTRX 
considers and handle these two kinds of actions. In the case of impulsive actions, the world state will have facts that indicate 
the consequences of the end of actions. With continuous actions the world state will have statements that the action(s) is(are) 
in execution. 

The ALWAYSTRX operators are defined by the 4-tuple: 
− operator name and parameters; 
− pre-condition list; 
− delete list; 
− add list; 
The pre-condition list contains facts and activities that must be satisfied in the world state, enabling the application of the 

operator. The delete list contains facts that will not be true after the beginning of execution of the activity. The add list 
contains the facts that will be true after the beginning of execution of the activity. 

The ALWAYSTRX events are defined by the 5-tuple: 
− -event name; 
− -pre-condition list; 
− -delete list; 
− -add list; 
− -class; 
The pre-conditions delete and add lists are identical to ALWAYSTRX operators. The class is related to the possibility of 

event occurrence and is used by the planner to associate weights to the occurrence of paths. 
The world state in ALWAYSTRX is defined by a set of facts, that can be predicates (for example Robot2(position1) ) 

and/or running activities (for example move(green-box, position12, position27)). Each world state is associated with a 
weight, calculated from sensory information, that indicates the possibility of the state become true, based on information 
from the generated plan until that state. 
 
3.2. Planning Algorithm  
 

An example of the ALWAYSTRX method initially without the external events weights will be presented in this section. 
The user defines the operators and the events with all attributes as well the initial world state and the goal state and feed the 
system. After the data input, the user starts the system. The execution module still cannot do anything because there is no 
path to follow. The planner initiates its work. The graphic representation of the generated plans with its paths follows PBE 
(Lopes98) using Petri-nets and will be called here planning tree: the places represent a description of valid facts (world state) 
and the running activity. The running activity means none, one or more actions executing. The transitions represent the 
internal and external events that may occur and change the world when an activity is executing. Figure 2 presents a plan 
being generated (synthesized). From the initial world state description, all the activities (instantiated operators) with its pre-



condition lists satisfied are selected. From the start event after the initial state will be n  links corresponding to the n selected 
activities (Ai, Aj, ..., An  Fig. 2). 
 
 
 
 
 
 

Figure 2. Selection of n possible activities (Ai, Aj, ..., An) from the initial world state, which pre-condition list satisfied. 
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Through an evaluation heuristic, one of the n activities is chosen as a first activity of the plant. The heuristic chooses the 

activity that best change the world towards the goal state. Next, the new world state is calculated removing the facts 
described in the selected activity delete-list and adding the facts described in the selected activity add-list.  

The planner then finds the relevant events that may occur after the selected activity. The relevant events are all the events 
with its pre-condition lists satisfied (true in the calculated state). In the planning tree, below the selected activity, are m 
transitions corresponding to the m  events that may occur after that activity (Fig. 3). The initial world state changed by 
activity Aj is called State Aj. 
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Figure 3 – Planning tree expansion with the relevant events to the State Aj, as a consequence from the activity Aj selected 

by the evaluation heuristic. 
 

The next job of the planner is to compute for each relevant event the world state change after its occurrence, using the 
respective event’s add-list and delete-list. Each transition in the planning tree correspond to an event and have a world state 
that corresponds to the application of the facts from the add-list and delete-list (Fig. 4). 
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Figure 4 – New world states generated by the occurrence of the m events (Ea, Eb, Ec, ..., Em). 
 

At this point in the planning tree, each event has a world state associated. The planner repeat, for each event, the same 
procedure done after the START event: verifies the activities pre-condition lists (instantiating the operators) and select those 
with the pre-condition list satisfied (true) in the respective event state. Below each transition will be placed r links, 
corresponding to the r selected activities (Fig. 5). 
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Figure 5 – Planning tree expansion with the relevant activities for each event. 
 
The same evaluation heuristic early cited is used repeatedly for each transition, choosing one of the r activities as the best 

change to the world state towards to the goal state. The planning algorithm repeat the steps early described with the new data 
generated. 

Below each one of the m transitions there will be an activity that was chosen to be the probable second path activity. It is 
important to note that now there are m paths with two activities, where the first activity is the same for all paths because it 
was the father node that generated the m transitions. Figure 6 show the selected activities and the generated paths.  
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m paths:  1.  Aj  ->  Ea  ->  A12 
  2.  Aj  ->  Eb  ->  A28 
  3.  Aj  ->  Ec  ->  A07 
  m.  Aj  ->  Em  ->  A53 

Figure 6 – Selection of activities by the evaluation heuristic and m paths generated. 
 
For each one of the m activities selected as a sequence of each one of the m transitions, the world state is computed using 

the add and delete lists and after that the pre-condition lists of all events are checked to the selection of the relevant event for 
each activity.  
 
3.3. Execution Algorithm 
 

Continuing the sequence explained in section 3.2, the execution module now have paths created by the planning module 
and can proceed starting its activities concurrently with the planning module. The execution module does not work with all 
planning tree and just uses the paths created by the planning module. In this example, Fig. 7 shows the resulting Petri-net. 
The START transition takes the system to state Aj, as a consequence of the Aj activity. The execution module register in the 
knowledge base that it began the execution of the activity Aj (put a mark on the place) and waits one of the m events that can 
happen after activity Aj, as described in the Petri-net of Fig. 7. With the execution of activity Aj, the other activities Ai, ..., An 
can not be anymore backtracking points and all the links in the tree below them will not be considered. 



Suppose that event Eb happen. The execution module observing the occurrence of Eb, informs the knowledge base and 
verifies in the Petri-net the next activity to be executed, starting it immediately registering the fact in the knowledge base. 

Each step of the execution module is registered in the knowledge base so that the planning module can simplify the 
planning tree, eliminating the links of the paths that do not contain any event or activity already executed by the execution 
module. The planner also updates the weights of occurrence of the plans. 
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Figure 7 – Petri net viewed by the execution module. Mark on activity Aj to indicate “in execution”. 
 
The planning module, running concurrently with the execution module, work with a search tree of size much lower than 

a classic planner search tree. In each iteration, the expansion algorithm updates the tree changing it with new information 
from the execution module, until the goal state can be reached. 

 
3.4. External Events Ocurrence Weights  
 

The ALWAYSTRX planning module associates weights to the occurrence of the possible relevant external events that 
may come to happen in a given world state, based but not the same the probabilistic reasoning with Bayesian networks 
(Pearl, 1988)(Abranson, 1990). Considering the weights of many queued events with the activities, is possible to compute 
possibilities of reach a given world state. With this information, the planning algorithm can expand the planning tree more 
deeply in those paths with greater weight and expand superficially in paths with lower weights. This process also decreases 
the computational effort because not all the paths are fully expanded. 
 
3.5. Implementation  
 

The ALWAYSTRX method was implemented in C language for Windows and UNIX platforms with an user interface 
directed to collect information about operators, events, initial world state and goal state. Information during the agent 
execution can be viewed in the knowledge base. 

As early noted, the complexity of a planning system handling external events integrated with agent execution demand 
optimization techniques in the computer implementation otherwise it could not be used in real world applications. 

One fundamental technique used in the implementation of ALWAYSTRX method was the adaptation of RETE algorithm 
(Forgy82)(Russel95) to solve the problem of variable instantiation in the pre-condition lists of the operators and events. One 
RETE like network is created before the system START and is used by the planning module. 

The information about operators and events given by the user are checked for inconsistencies and, if everything is ok, are 
compiled to a RETE-like network. 

The user then STARTs the system establishing the knowledge base and the two concurrent processes corresponding to 
the planning module and the execution module. 
 
4. Final Considerations  
 

A new planning method that handles external events in the planning phase and is integrated to the execution control of 
intelligent manufacturing systems, called ALWAYSTRX , was presented. 

The planning module works concurrently with the execution module providing to the agent (e.g. manufacturing system) 
reactive and planning skills considering external events. The planning module considers the uncertainty in the occurrence of 
external events associating weights to discover which world state has greater possibility of happen. The ALWAYSTRX 
method works with weights to update the planning tree to reach a given state. Additional studies must be carried out to find 
out ways of associate weights to the external events, as well techniques to observe the behavior of the occurrence of events 
and ways of update the weight values considered initially. 

The paths generated a little bit earlier by the planner to the execution module are represented by a Petri-net and the 
execution module reads the Petri-net and executes as a Petri-net player. 



Proceedings of COBEM 2005 18th International Congress of Mechanical Engineering 
Copyright © 2005 by ABCM November 6-11, 2005, Ouro Preto, MG 

 

At this point the generated Petri-net works for all possible states only one mark and therefore in this particular case the 
Petri-net is a State Diagram. Further studies must be made to use multiples marks, making explicit the execution parallelism 
and the concept of partial state. 
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