ABCM Symposium Series in Mechatronics - Vol. 2 - pp.289-296
Copyright © 2006 by ABCM

Softwar e Ar chitecture for Autonomous Vehicles

Ricardo Shimoda Nakasako

Department of Mechatronic and Mechanical Systenwirteering

Escola Politécnica da Universidade de Sao Paulo

Rua Prof. Mello Moraes, 2231 — Cidade Universitdsiao Paulo — SP — Brasil — CEP 05508-900
ricardo.nakasako@poli.usp.br

Fabio Kawaoka Takase

Department of Mechatronic and Mechanical Systenwirteering

Escola Politécnica da Universidade de Sao Paulo

Rua Prof. Mello Moraes, 2231 — Cidade Universitd8iao Paulo — SP — Brasil — CEP 05508-900
fabio.takase@poli.usp.br

Abstract. Modern developments have increased the processing capacity of controllers along with the gradual decrease
in their price. This has enabled the construction and use of intelligent control elements in embedded applications.
These elements, such as smart sensors and actuators, not only can pre-process sensorial data using sophisticated
algorithms but also enables the use of multiple communication protocols linking all the existing devices. The use of
these control elements leads clearly to the construction of a distributed environment control in which the responsibility
for processing environment data is divided between the several parts of the system. Moreover, there can be some
redundancy in the data collected as well as the data collected by some sensors can have a greater priority level or must
be collected using a shorter update deadline than others. In order to orchestrate this complex communication (which is
natural on any distributed computing environment) between the elements of such a control system, the figure of a
network connecting all the devices and a Middleware coordinator are evident.

This article firstly analyzes the current efforts in developing the software architecture used to support these
requirements in terms of message coordination and processing. Based on these, a software architecture is then
proposed in order to enable the easy integration of new control elements dynamically as well as maintaining the real
time response of the control system.

Keywords: Sensor Networks, Real-Time, AUV, Software Architecture, Embedded
1. Introduction

Autonomous Underwater Vehicles are mission-critisgbtems which must be controlled by real-time
embedded software. This fact imposes several additiconcerns and costs when developing code which
controls such a vehicle. Moreover, the design atwkead to the implementation of mission specific
systems, therefore resulting in poor code reuseamsequently, in higher costs [Pasetti and Pre@9].

In order to address this difficulty, several appites have been used, from the development of coenpon
which enables the creation of modularized architectvhich enhances code reuse to the establishohent
development frameworks, which makes the reuse a@é¢ caandatory [Pasetti and Pree, 1999].

However, as can be seen on [Newman, Hill et ak]dtrrent proposed models do not take advantage on
the usage of modern technology and standards saciCAdN (Controller Area Network) and the
establishment of a sensor network. They also ar@mpared to deal with modern sensors which aequir
and process complex data (such as images) whieteftite, have a completely different response &
requires the implementation of a completely diffe¢reontrol behavior. To end with, the control otku
vehicles deals only with static positional dataathiin the long run, limits the complexity of misss.

Finally, the existing logical structure is stilhited when dealing with a variable number of sensord
actuators and this can compromise the fulfillmera onission, for example, should in the middletadrie

of these elements break (i.e.: stop working) dr(fa.: work improperly) [Newman].

The structure of this paper is as it follows: Hyrsthe existing software modeling approaches aesqnted

in a way to extract from these models their upsiaed downsides. A model which tries to integra th
best characteristics of all the studied approaulitssthe new technology is then presented.

2. Analysis of an existing model: MOOS
The MOOS (Mission Oriented Operating Suite) framewwas created in 2001 as a way to establish a

framework upon which mobile robotic software cohbkl developed. It consists of a core database module
called the MOOSDB, which is used as a central rigmysfor reading and writing data, and severalebas

jokamoto

 ABCM Symposium Series in Mechatronics - Vol. 2 - pp.289-296
 Copyright © 2006 by ABCM

‘framework’ classes. These classes provide basictioning such as logging, navigation and mission
control functionalities and interface classes thtowhich hardware specific developers could develop
code to communicate with the central database. MIB®S topology is detailed in the following sub-
section.

2.1. MOOS topology

The MOOS set of applications consists on two dffetypes of modules, according to their functidpal

« Clients: these modules are the one which reallgegadata, process it and control the movementeof th
vehicle. They are so called ‘clients’ because thaly data source (either for writing or reading}tie
central module, the database (MOOSDB).

« Database (MOOSDB): this is the central module & MOOS system. It acts as a unique common
data source which must be used by all MOOS modalstore and read data.

Among the existing clients, there are two differgmtes of applications:

¢ Processes: these are applications whose main Bjestpure data processing, therefore not dealing
directly with the vehicle’s sensors and actuat&samples of this kind of applications are: pHelm,
which deals with determining the most suitable atitutn commands (but not with an actuator per se);
pNav: which takes data from sensors and providesstimate of the vehicle’s position and velocity
and pLogger, which logs all the events and navigadiecisions taken.

« Interface: these are applications which are baiti¢al with sensors and actuators in a organized wa
either transforming the logical actuation commaimde real actuator commands or gathering only
relevant sensor data (blocking most of the repedd¢a and getting only the changes).

In order to implement a generic communication betwany client and the MOOSDB, a common interface

for data processing, requesting and storing wa®ldped, all of it using a basic communication class

(CMOOSCommClient) which would handle the operationa TCP/IP network which connects all the

clients to the MOOSDB.

This topology is illustrated in the following pictu

pNav

CMOOSCommClient

pHelm

CMOOSCommClient
L

pLogging

CMOQSCommClient

MOOSDB

CMOOSCommClient

CMOOSCommClient

CMOOSCommClient

Figure 1. MOOS Topology model

The model presented is a simplified one. In thel maadel, each different sensor would have a
communication link to the MOOSDB and would be intdly classified into one of the following
categories: Positional, Depth, Rotation and Vejodit this model, also, all actuators would be édlonly

to the iActuation interface. This interface, in th@posed model, has internally only three differtgpes

of actuators: Elevator, which regulates the depthevehicle, Thrust, which is the general actu&iothe
vehicle’s velocity and Rudder, which is the genectlator for the vehicle’s rotation.

2.2MOOS model analysis

It is not very hard to see that the MOOS projea &aingle point of failure, which is its databasadule
(MOOSDB). Therefore, development efforts on optaiian and error control had to be fully focused on
this module’s development.

It is also easy to see that this centralized deweémt had to occur in order to centralize the diina
decisions in only one part of the application, lsattevery sensor data had to go through an anatysis
order to determine the vehicle’s current locatigiNgv process) and how it impacted the mission’s
objectives before it could result into a actuatarder (pHelm). This process might not be so quitien
dealing with sensors whose data needs a quickmespsuch as when eminent collision is detected.

From the communication standpoint, the TCP/IP mawitgproves not to be the best when dealing with
control data. This set of protocols is not prepareddeal with priority messaging (TCP implements
reliability but not different levels of priority h®een messages) and support for this kind of conration
can be processor consuming.

Finally, from the mission standpoint, it is easys&e that the generalization of how sensors anatacs
affect the system does not correspond to the nagesemplexity. Missions are absolute location tezla
and, therefore, their definition does not include heed to, eventually, lock the underwater veliitla
position relative to other underwater structurenmvement.

3. Proposed solution

The MOOS solution is very complete and works fineew dealing with expected situations and simple
missions. However, it does not comprise the levalamplexity real-life missions might require (suab
maintaining a position relative to another undeavatbject) and is limited in terms of the data semgan
give and actuators can process (a mechanical autdvbe useless). Moreover, it does not implement an
emergency way in which sensor data can directbrfiate in an actuator’s behavior.

In order to address these necessities, anothewaseft architecture is needed as well as another
communication protocol between controllers, sensmid actuators. These are exposed in the following
paper subsections.

3.1. The CAN Protocol

The CAN protocol is a de facto communication protatandard between sensors and controllers which i
widely used to implement distributed control systémautomobiles and in the industry. It specifielsus
topology and implements a CSMA-CA MAC layer protbdo order to do so, before the message (or,
payload) is transmitted in the bus, there must frarmae composed of an 11 bit identifier which igdior
priority messaging and collision avoidance. Thistpcol works in the following way:

Every node, when trying to transmit data, listemgat most) the first 11 bits in the bus to see tivbieit
really got to send the data or not. Suppose nod@sahd 3 are trying to transmit data at the same,t
node 3 with a higher priority than 1 and 2.

hi L
low

Node 1 171 1><

Node 2 110 1

Node 3 11110101010121111
Figure 2 CAN priority implementation

When node 2 and 3 transmit 0 and node 1, 1, thegybes to low and, as node 1 is listening to the bus
knows his message is not top priority and stopsstrétting data. The same occurs to node 2 wheies t
to transmit 1 and the bus keeps in low.

This characteristic is essential when dealing withsors whose generated data can or not be ofrextre
importance (such as collision eminence) for theiclehThis message driven architecture of CAN forms
the basis for the proposed network topology andsequently, software architecture.

3.2. The proposed topology
In order to address the difficulties seen in the @8 model, the following communication model is

proposed. In this model, all the objects are CABbded devices. Each of the devices is uniquelytified
by a 16 bit header which follows the normal CANopity header.

MessageFilter

Mission
Controller

MessageGather

MessageFilter MessageFilter

CANDirectives CANDirectives CANDirectives

Figure 3. Proposed topology

MessageGather

Position

Controller

The Mission Controller acts as a planning agerpgoesible, therefore, for planning (and, when nesgss

re-planning) the necessary steps to take the wetocthe expected goal position. It is also resjbagor

examining the existing sensors and calculatingntiean level of Certainty of the data presented ley th

sensors. This data is used in order to establipbliay spread by a high level message throughoeit th

sensors which dictates how CAN priorities must dlewated.

The Position Controller acts as an ‘instinct’ ageherefore being responsible for maintain the clefs

current position.

For each of the Sensors there is an object ofyijpe CANDirectives. This object is responsible foe t

following actions:

« Verify the level of certainty of the sensor in qi@s, the priority of the data generated by thessen
and translate it into a priority level, accordiogte policy established by the mission controller.

« Mount the message (priority and node id) and transmover the network, using the correct
communication class as a basis.

For each of the Actuators there is a MessageFalbgect. This object is responsible for the follogin

actions:

¢ Verify if the message comes directly from a sensith high priority or from a Mission Controller
message (normal priority) or from a Position Colfgranessage (normal priority).

« If the message comes from a sensor, then it impiesrtbe reaction agent behavior, inferring directly
in the actuator’s settings.

« If it is a Mission/Position Controller message (mal priority) it verifies if the next 16 bits
corresponds to the actuators id. If so, then timtrobmessage is translated to the actuator.

Finally, the Mission Controller is apt to receiMethe sensor messages (including emergency onleishw

enable it to recalculate the necessary tasks tongucsh a certain mission or even decide for a imiss

abort action.

Through the use of such a distributed architecitiie possible to:

e Control and update dynamically the tasks which axqaizh a certain mission;

* Make a direct bridge between Sensor and Actuatemergency cases;

« Enable a priority messaging which enables the diseeral Sensors linked to the same bus at the
same time.

This topology is made possible by the use, wherssary, of intelligent microcontrollers (such aslijl

which allow the quick implementation of complex alatructures and data processing logic directly on

hardware [Eisenrach and DeMuth] using a high-lgvegramming language (such as Java).

3.3. Sensor class modeling

Sensors, from the most primitive ones (whose ousigrial is analog and, thus, must be capured)édo th

most complex ones (which implements events and nanwaitput) can have their output processed

accordingly and, thus, be modeled into several @eslasses.

These classes can be abstractly represented bygke siensor interface, which allows generic object

serialization to happen in the Topology networkeTthea is to create classes which are generic éntaug

be carried through the network, but with a levelndérmation good enough to be usable by the Missio

Controller module. This implementation uses thafecdesign pattern.

The Sensor interface defines that at least foypgmtees must be implemented by a Sensor-type class:

« Certainty: this defines a level of certainty in théormation being passed

« Priority: this defines the level of priority in theformation being passed

« Timestamp: this value defines a timestamp whichsisd by the controller in order to determine if the
information passed is still valid or not

¢ Value: this represents the value which was meadwede sensor itself

cd Sensor /

Sensor

Inertial Compass Vision AbsolutePosition

Figure 4. Sensor hierarchy classes

The first three properties can be used in orderatoulate the level of priority which will be usedhen
dealing with the Comm class, should it supportnisidhandling in the link level (such as CAN). Ttierd
property (Timestamp), though, is essential for ¢batroller in order to know whether the informatiisn
reliable or not.

The fourth property is an object (which derivesnirthe derived Sensor classes) which will have to be
processed accrdingly by the controller in ordetate its actions.

3.4. Layer Communication modelling

After modeling the Sensors, it is necessary tobéistaa way in which sensors and the controller can

communicate (i.e.: How can sensors deliver theiasuees). In order to do so, a coherent logicatsira

is made necessary. This logical structure usefotlmsving classes/interfaces:

e Comm: this class represents a generic communicai@ss, should it implement TCP/IP or CAN
protocols. It is represented in the original togyl@as the CANDirectives and the MessageFilter kyer

e Sensor_Skeleton: this class implements the sets&f (as it was modeled in the previous part ef th
paper) and is serialized to be transmitted oven#te/ork.

e Sensor: this interface is used by both sides oh#te/ork to provide the necessary generalizatival le
when transmitting sensor data on the network.

e Sensor_Stub: this class has both a Comm and a ISertedace implementation and it is used to
receive serialized Sensor objects though the né&twor

« Sensor_Client: this class represents the Senstfriithe Mission Controller or Actuator layers.

cd Sensors /

Controller Sensor_Client

Sensor_Stub

I
Implements
’ Comm

«interface»

Sensor

Implements

Sensor_Server Sensor_Skeleton

Figure 5. The communication classes
3.5. Implementation

In order to implement this design in a down-to{eartalistic way, the chosen language was Javaohlgt

it has several ‘real-time’ facilities implemented iits virtual machine, but it also has several
communications classes already implemented. Moredive usage of this language enables the design of
hardware interfaces using TINI [Eisembach and Dé&\MR003].

The Comm class in the previous diagram can be imghéed as an extension to the existing CAN class
designed to work with TINI. Several issues, thougiust be taken care for from the creation of better
methods for trying (and retrying) to send messagegeneral to the correct formation of frames and
enhanced object serialization.

Initially the implementation of a primitive set sfich classes has been done via the usage of T&¥eglm

a test environment (Figure 6). Further work willppart the use of CAN and CAN communication
libraries.

i+
Sensor_Skeleton class
.

import java.ioc.¥;
import java.net.S
import java.net.S5

public class Sensor_Skeleton extends Thread |
SensorServidor meuServidor;
public Sensor_Skeleton(SensorS3ervidor servidor) |
this.meuServidor = servider;
+
public void run{) [

t serverSocket = new Ser et (9000);
socket = server3ocket.accept();

W

while (socket!=null){

CbjectInputStrean inStream = new ObjectInputStream (socket.getInputStream());
ng)inStream.readObject();
if (metodo.equals(” tion")){
= meuServidor.getPosition():
Cbjectlutpu outStream new CbjectlutputStrea
outStream.writelnt (Fosition outStream.flush();
} elase if (metodo.equals("Certa sy |

erteinty = meuServidor.getCertainty();

5

cut3tream.writeCbject (Certainty) ; cut3tream.flush();
H
1
} catch (Throwable t) {t.printStackTrace(); System.exit(0):}

H
public static void mein (String[] args) {

SensorServidor sensor = new SensorServidor ("3

Sensor_Skeleton skel = new Sensor_Skeleton({al

skel.start();

}
}

i*
Sensor_Stub class
'

import java.io.*;
import java.net.Socket;

public class Sensor_Stub implements Sensor |
Socket socket;

public Sensor_Stub() throws Throwzble {

socket = new Sock 100) 5

}
public int getPosition() throws Ih
CbjectOutputStream outStream new CbjectOutputStream(socket.getlutputStream());
cutStream.writefbject {"Posi “V:
outStream. flush();
CbjectInputStream inStream = new ObjectInput3tream(sccket.getInputStream()):
return inStream.readInt();

}

ObjectOutputitream outStream toutputStrean (socket.getOutputStrean()) ;
outStream.writeObject ("Cert
cutStream.flush();

m{3ocket.getOutputStream());

putStrean cutStream = new CbjectlutputStream(socket.getCutputStream()):

r*
Sensor interface
vy

public interface Sensor {
public int getPosition({) throws Throwsble;
public String getCertainty() throws Throwsble;

}

[

Sensor_Server class

*

public class Sensor_Server implements Sensor {
int Pozition;
String Certainty;
public SensorServidor(String neo, int id) {
this.Position = idr
this.Certeinty = no;
¥
public int getPositien(){
return Position;
¥
public String getCertainty(){
return Certainty;
¥
}

I
Sensor_Client class
£/

public class Sensor_Client {
public static void main (String [] args) |
try{
Sensor sensor = new 3ensor_Stub():
System.out.println(

Wi "+
sensor.getCertaintw());
} catch (Throwable t) [t.printStackIrace():}
}
}

Chjec eam inStream = new CkjectInputStream(socket.getInputStream()):
return (String) inStream.readObject();

Figure 6. Partial implementation of communicatitesses

3.6. Futurework

After having modeled the Sensors and how they camgate with the controller, it is necessary to mode
the Actuators in a similar, generic way. It is ausly necessary, though, to implement a ‘keep ‘alive
mechanism (which may use the exchange of statisseshat the Actuator can, initially, announce its
behavior/effect when moving the AUV and, from tirw time, literally announce its own state (full,
degraded performance or broken). Moreover, it muben taking a reflective action (such as when the
message transmitted by the sensor is really urgemtmunicate the deed to the Mission Controller.
Secondly, the Mission Controller must be implemdnte such a generic way which uses all the
information given by both sensors and actuatorsorider to either calculate a new strategy which
accomplishes the objective or decides for comptession failure.

Finally, implementation of the communication classaist be done and a real environment must beinsed
order to produce results. A coherent test envirarimeust be also set, using mock objects repreggntin
sensors and actuators in order to test the artinigenplementation.

4. References

Etschberger, 1.K., 2000, “CAN-Based Higher LayeotBcols and Profiles”, IXXAT Automation GmbH

Hill, J., Szewczyk, R., Woo, A., Hollar, S. Cullé, Pister, K., 2000, “System Architecture Direatidfor
Networked Sensors”, Proceedings of the IEEE, vbl.i®.7 pages 1002 - 1022

Newman, P.M., 2000, “MOOS — Mission Oriented OgaratSuite”, PhD Thesis, Department of Ocean
Engineering, Massachusetts Institute of Technology.

Pasetti A. and Pree, W.,1999, “A Reusable Architecfor Satellite Control Software”, Dept. of Contgu
Science, University of Constance, Germany.

Pasetti A. and Pree, W., 1999, “The Component SofvChallenge for Real-Time Systems”, Proceedings
of the ' International Workshop on Real-Time Mission-CaticSystems; 30 Nov -1 Dec, 199,
Scottsdale, AZ, USA.

Richardson, P. Sieh, L. Haniak, P., 2001, “A Reiahd Control Network Protocol for Embedded Systems
Using Controller Area Network (CAN)”, IEEE Electrios and Information Technology Conference,
Rochester, Ml

Eisenreich, D. and DeMuth, B., 2003, “Designing Eahtbed Internet Devices”, Newes

5. Responsibility Notice

The author is the only responsible for the printederial included in this paper.

