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Abstract. For many applications it is not usually practical to provide mobile robots in advance with valid geometric 
models of their environment. The robot will need to create these models by moving around and sensing the 
environment, while minimizing the complexity of the required sensing hardware. Here, an information-based iterative 
algorithm is proposed to plan the robot’s visual exploration strategy, enabling it to most efficiently build a graph 
model of its environment. The algorithm is based on determining the information present in sub-regions of a 2-D 
panoramic image of the environment from the robot’s current location using a single camera fixed on the mobile robot. 
Using a metric based on Shannon’s information theory, the algorithm determines potential locations of nodes from 
which to further image the environment. Using a feature tracking process, the algorithm helps navigate the robot to 
each new node, where the imaging process is repeated. A space invariant transform and tracking process is used to 
guide the robot back to a previous node. This imaging, evaluation, branching and retracing its steps continues until the 
robot has mapped the environment to a pre-specified level of detail. By tracing its path from node to node, a service 
robot can navigate around its environment. Experimental results show the effectiveness of this algorithm. 
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1. Introduction  

 
The market for medical robots, underwater robots, surveillance robots, demolition robots, cleaning robots and many 

other types of mobile robots for carrying out a multitude of services has grown significantly in the past decade. 
Presently most service robots for personal and private use are found in the areas of household robots, which include 
vacuum cleaning and lawn-mowing robots, and entertainment robots, including toy and hobby robots. The sales of 
mobile robots are projected to exceed the sales of factory floor robots by a factor of four (Lavery, 1996). Therefore the 
need to develop efficient localization and mapping algorithms for such systems. 

Mobile robot environment mapping falls into the category of Simultaneous Localization and Mapping (SLAM). In 
SLAM, a robot localizes itself as it maps the environment. Researchers have addressed this problem for well-structured 
(indoor) environments and have obtained important results (Anousaki et al., 1999; Castellanos et al., 1998; Tomatis et 
al., 2001). These algorithms have been implemented for several different sensing methods, such as stereo camera vision 
systems (Castellanos et al., 1998), laser range sensors (Tomatis et al., 2001), and ultrasonic sensors (Anousaki et al., 
1999). 

On the other hand, the existing SLAM algorithms typically require a relatively expensive sensor suite such as stereo 
vision systems. Commercial applications for service robots in large scale would only be possible after simplifications in 
hardware resources, which in turn would result in lower setup costs, maintenance costs, computational resources and 
interface resources. 

In this work, an unknown environment exploration and modeling algorithm is developed to accurately map and 
navigate the robot agent in a well-illuminated flat-floored environment, using only information from a single monocular 
camera, wheel encoders and contact switches. Therefore, this algorithm has the potential to significantly reduce the cost 
of autonomous mobile systems such as indoor service robots. The proposed algorithm, named here IB-SLAM 
(Information-Based Simultaneous Localization and Mapping), is unique in that it utilizes the quantity of information 
(entropy) of the environment in order to predict high information yielding viewpoints from which to continue exploring 
the environment. This has been shown to result in a significantly more efficient and robust exploration process as 
compared to other conventional approaches (Sujan et al., 2003; Sujan et al., 2004). The algorithm is described next. 
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2. Simultaneous localization and mapping algorithm overview 
 

The proposed environment exploration and modeling algorithm consists of 3 primary components. The overall 
process is shown in Fig. 1. The mobile robotic agent models the environment as a collection of nodes on a graph. The 
first component of the algorithm is to identify potential child nodes from a given location, see Fig. 1. At each node the 
robot conducts a panoramic scan of the environment. This scan is done as a series of 2-D image snapshots using in-
place rotations of the base by known angles. Next, an information theoretic metric is used to divide the panoramic 
image into regions of interest. If any region of interest contains sufficient information then it is identified as a potential 
child node, which would then need to be explored. 

After the list of child nodes is collated, each child node is explored sequentially. To explore a child node, the mobile 
agent must traverse to that node. The second component of the algorithm is to traverse to a child node from the current 
node (Fig. 1). This is achieved by tracking the target node using a simple region growing tracker and a visual servo 
controller. If the node cannot be reached by a straight line due to an obstruction, then the point of obstruction is defined 
as the new child node. At each child node the process of developing a panoramic image, identifying the next level of 
child nodes, and exploring them continues. 
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Figure 1. Overview of the exploration and modeling algorithm (left), with its key components (right) 
 

The third component of the algorithm is to traverse to a parent node from the current node (Fig. 1). This is done 
when all the child nodes of the current node have been completely explored, allowing the other child nodes of the parent 
node to be explored. To return to a parent node the robot must first identify the direction of the parent node, which 
requires a process quite different than the process of moving to a child node. This is done using a Mellin transform 
(Alata et al., 1998) to determine if the image that the robot currently sees is what it would expect to see if it were 
pointed in the correct direction toward the parent node. The expected image is derived from the panoramic scan taken at 
the parent node. Once this direction is established, the robot moves toward the parent node. Visual servo control, based 
on the correlation between the current image and the image the robot would see if it were at the parent node pointed in 
the same direction, governs if the robot has reached the parent node. 

These three components – imaging and evaluation, branching and retracing its steps – continue until the robot has 
mapped the environment to a specified level of detail. The set of nodes and the images taken at each node are combined 
into a graph to model the environment. By tracing its path from node to node, a service robot can then continue to 
navigate as long as there are no substantial changes to the environment (even though the proposed approach is relatively 
robust to such changes). 

Experimental results are presented along each section, obtained from a mobile robot agent adapted from an ER-1 
commercial system (Evolution Robotics, 2004), see Fig. 2. The system consists of a 2-wheel differential system driven 
by step motors, equipped with wheel encoders (for odometry), three bump switches for measuring contact, and a single 
color camera (640 × 480 pixels resolution) mounted to its base. The robot is controlled by a 1.5GHz Pentium IV 
notebook mounted on its structure. It is used to explore an apartment, generating the graph shown in Fig. 2 (right). Note 
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that each node on the graph consists of a panoramic scan at that node, while each branch on the graph consists of a 
heading and distance between the two connected nodes. The walls and obstacles were later added to this figure, because 
the robot cannot evaluate its distance from them due to the absence of range sensors or stereo cameras. Still, the robot 
can visually recognize the existence of such walls and localize itself within its surroundings using the generated nodal 
map. In the next sections, the details of the three key components of the algorithm are developed. 
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Figure 2. Mobile robot experimental system (left) and map of the environment with node locations (right) 
 

3. Child node identification 
 

The first component of the IB-SLAM algorithm is to identify potential child nodes from a given location. This 
process is initiated by developing a panoramic scan at the current node by the mobile robot agent. This scan is done as a 
series of 2-D image snapshots using in-place rotations of the base by known angles. The process involves first capturing 
a 2-D image. The elevation of the image is trimmed to maintain attention on lower regions that are accessible by the 
robot. A new image is captured by rotating the robot about its center by a fixed amount equal to the projection angle of 
the camera (or camera field of view). The process of capturing and trimming images continues until a full 360° 
panoramic scan is achieved. Conventional image joining operations can then be used to fuse the panoramic image 
together. For example, two images may be joined by identifying fiducials common to both to find a transformation 
between them. An example can be seen in Figure 3, taken from the experimental system. 

 

 
 

Figure 3. Panoramic scan (360°) taken and joined by the experimental system 
 
The key idea to identify potential child nodes is to reduce the acquired panoramic image using a quadtree 

decomposition method. In a quadtree decomposition, the image is divided into four equal quadrants. Each quadrant is 
evaluated to determine if further division of that quadrant is required based on a metric. This process continues until no 
further decomposition is required. This quadtree decomposition of the image may be used in a manner suitable to the 
application. Here the decomposition metric is the quantity of information in the quadrant. If the information in the 
quadrant exceeds a predefined value, then further decomposition is warranted. The goal of determining the amount of 
information in the image is to identify regions where there are significant changes occurring in environment. These 
changes would indicate the presence of a corner, an edge, a doorway, an object, and other areas worth exploring. 

But highly textured surfaces (such as furniture, carpets, curtains, wallpaper) or noise may also be identified as 
regions with high information content. Clearly these are regions that need not be explored and mapped. Thus, before the 
quadtree decomposition process starts, the image is pre-processed to remove these high frequency effects. Pre-
processing includes a two step process. First, a low pass filter is applied to the image to remove the higher frequency 
effects. Second, an adaptive decimation process (Sujan et al., 2003; Sujan et al., 2004) smoothes out patterns that 



exceed neighboring pattern variation. This is achieved by measuring the rate of change of pattern variance across the 
image. The algorithm limits the rate of change of pattern variance within its neighborhood, by comparing pixel intensity 
variance in windows with respect to similar windows located in the immediate neighborhood (nearest neighbors). When 
the rate of change of pixel intensity variance exceeds a prescribed rate, then the window is gradually passed through a 
low pass filter until the rate of change decreases to within bounds. Calibration is required and it is task dependent to 
determine the prescribed rate of change of pixel intensity variance as well as maximum window size. Once the image 
has been preprocessed, the information content may then be evaluated. 

 
3.1. Measures of image information content 
 

The information gained by observing a specific event among an ensemble of possible events may be described by 
the function (Reza, 1994) 
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where qk represents the probability of occurrence for the kth event. This definition of information may also be interpreted 
as the minimum number of states (bits) needed to fully describe a piece of data. Shannon’s emphasis was in describing 
the information content of 1-D signals. In 2-D, the gray level histogram of an ergodic image can be used to define a 
probability distribution: 
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where fi is the number of pixels in the image with gray level i, N is the total number of pixels in the image, and Ngray is 
the number of possible gray levels. With this definition, the information of an image for which all the qi are the same - 
corresponding to a uniform gray level distribution or maximum contrast - is a maximum. The less uniform the 
histogram, the lower the information. Although this is generally true, it is critical to note that images with ordered 
patterns may result in the same information content as one with no order. For example, a uniform histogram may be 
mapped to two very different images, such as a random arrangement of intensity values and a (uniform) smooth color 
gradient. Intuitively, the former would be expected to contain more information but using Eqs. (1) and (2), they result in 
the same value. However, this is readily rectified using conventional lossless image compression algorithms (Sujan et 
al., 2004). Thus, the information content is evaluated using the compressed version of the acquired panoramic image 
instead of the original image. The smooth gradient example would result in a much smaller compressed file than the 
random image, leading to a smaller information content, as expected. 
 
3.2. Information-based node identification 
 

The information theory developed above is used to identify potential child nodes. The algorithm breaks down the 
environment map into a quadtree of high information regions. The resulting image is divided into four quadrants. The 
information content of the compressed version of each quadrant is evaluated using a lossless compression algorithm and 
Eqs. (1) and (2). This information content reflects the amount of variation of the image in that quadrant (where higher 
information content signifies higher variation in the image section). Quadrants with high information content are further 
divided into sub-quadrants and the evaluation process is continued. This cutoff threshold of information is based on a 
critical robot physical parameter (e.g. the wheel diameter). 

After the quadtree of the image is generated, a series of binary image operations are carried out to identify the 
nodes. First, starting with an image template of zero intensity, the edges of every quad in the quadtree are identified and 
marked on in the template image. Next, the dimensions of the smallest quad are ascertained. All pixels falling within 
quads possessing this minimum dimension are marked on in the template image. Next, an image opening operation is 
carried out on the template image to remove weak connectivity lines. The resulting image consists of distinct blobs. The 
centroids of each blob are identified as the potential nodal points. Finally, the image coordinates of these nodal points 
are transferred to the original panoramic scan to obtain the final nodal point. 

Figure 4 shows an example of a raw image taken by the mobile agent during its exploration process. This image is 
trimmed and simplified using the information-based quadtree decomposition process described above. Several key areas 
in the image have been determined to have high quantities of information present. These areas are further processed to 
determine the coordinates of the child nodes, see Fig. 4. The identification process has selected nodes that are both 
useful (such as the ones near the doorway), but has also picked up nodes that may not be very useful (such as the one on 
the carpet). These latter nodes are often eliminated with greater low pass filtering in the image pre-processing steps. 
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Figure 4. Raw image taken by mobile robot onboard camera (left) and processed image with trimmed elevation, 
showing quadtree decomposition and identified child nodes (right) 

 
The number of child nodes can be limited for each parent using a few heuristic rules - such as planar proximity - to 

speed up the mapping process. In addition, to avoid generating child nodes at points that have already been explored, a 
uniqueness confirmation is carried out for every new child node identified. Given the camera properties, the direction of 
the identified child node from the current node may be readily determined. Consequently, the direction to get back to 
the current node from the identified child node may be computed. The expected view from the child node in this 
direction may then be approximated. If any previously explored nodes have a similar view in the same direction (i.e., if 
both node images correlate within some user-defined tolerance) then the identified child node is not considered unique 
and thus may be eliminated. The algorithm component to traverse to the unexplored child node is discussed next. 

 
4. Traverse to unexplored node 
 

The second component of the algorithm is to navigate the mobile robot to an unexplored child node from the current 
node. This is achieved by tracking one of the child (target) nodes obtained in the first component of the algorithm using 
a simple region growing tracker and a visual servo controller. The visual servo controller corrects for errors in heading 
of the mobile robot as it tracks the desired target. Target heading angle θ is determined based on the camera focal length 
and the position of the target node on the imaging plane. 

The visual servo controller continues guiding the mobile robot until either the target node image vanishes across the 
image bottom (or top) edge, or the robot’s motions are obstructed. At this point the child node is established, while its 
direction and odometric distance from the parent node are recorded. If the node cannot be reached by a straight line, 
then the point of obstruction is defined as the new child node, and the directionality of this obstruction is saved. When 
the child node list from Section 3 is compiled at this new node, then any nodes requiring motion in the direction of the 
obstruction are eliminated from the list. 

Improved accuracy may be obtained by concurrently tracking multiple fiducials to determine the primary target 
heading, instead of tracking a single target point. This improved heading accuracy obtained through increased 
redundancy is a feature that can be turned on or off depending on how accurately one needs to move. In addition, an 
Extended Kalman Filter (Gelb, 1974) is used to maintain an estimate of the robot heading. Using both the estimate of 
target heading as well as an odometric measure on distance traversed, the mobile robot generates a graph similar to the 
one in Fig. 2. Although these measures may be inaccurate, they serve as key parameters in estimating future movements 
along the graph. The process to return from a child node to its parent is described next. 

 
5. Traverse to parent node 

 
The third component of the algorithm is to move back to a parent node. Moving to a parent node requires a process 

quite different from the process of moving to an unexplored child node. It is important to note that the process described 
in this section is used to approach any node that has been previously visited. Thus, once the map has been built, this 
process is used by the robot to navigate throughout the entire graph and around its environment. It can be used to 
traverse either from child to parent or from parent to child, as long as both locations (landmarks) include previously 
taken panoramic images to be compared. 

To return to a parent node, the robot must first identify the direction of this node. Using an Extended Kalman Filter, 
the mobile robot maintains a measure of the heading as it moves from node to node. Additionally, odometric measures 
of distance are also maintained. The measure of heading from the graph is used to determine the correct direction to 
point at. However, odometric errors would prevent the robot from performing accurate rotation without feedback. To 



compensate for these errors, an estimate of the expected image at the parent node facing away from the child node 
position may be generated from the panoramic scan previously obtained at that target node. In other words, if the robot 
were heading in the correct direction, then part of the image it “sees” should be a scaled version of the image that it 
would see if it were located at the target node, facing in the correct direction, see Fig. 5. 
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Figure 5. Overlap between the child and parent node views 

 
There are several algorithms to correlate the images from the child and parent nodes. One approach is to use integral 

transform-based invariants. The number of robust invariant components is relatively large, which makes such 
transforms suitable for spread spectrum techniques. In addition, mapping to and from the invariant domain to the spatial 
domain is well-defined and it is in general not computationally expensive. The invariant used in this work is based on 
the Mellin transform (Alata et al., 1998). This transform is invariant to scale, therefore it is a good candidate to correlate 
views in the same direction taken from child and parent nodes, which are scaled versions of each other. 

Let the image be a real valued continuous function f(x,y). Then f(x,y) can be discretized as an N × M matrix F with 
elements fk,j, where N × M is the image size with pixel dimensions ∆x and ∆y, and 

 
k, jf f (k x,  j y≡ ⋅∆ ⋅∆ )
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with k = 1, ..., N and j = 1, ..., M. The continuous Mellin transform M(ω1, ω2) is a function of the frequencies ω1 and ω2. 
It can be discretized as an U × V matrix with elements Mu,v considering frequency intervals ∆u/2π and ∆v/2π for ω1 and 
ω2 respectively, 
 

u,vM M(u u / 2 ,  v v / 2≡ ⋅∆ π ⋅∆ π           (4) 
 

with u = 1, ..., U and v = 1, ..., V, resulting in 
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The 2-D Mellin transform is then given by the product Tx⋅F⋅Ty, where 
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 (6) 

 
To identify the parent node direction, a Mellin transform is used to determine whether the image that the robot 

currently sees is what it would expect to see if it were pointed in the correct direction toward the target node. Note 
however from Fig. 5 that, without any range information, the overlap dimension of the images cannot be uniquely 
determined. The farther the destination node is from any wall or other feature in the environment, the smaller will be the 
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difference between the views from the parent and child locations, leading to a larger overlap window. Because the robot 
does not have access to 3-D data, it cannot estimate its distance to the walls and therefore the scale of the overlap 
window. To overcome this limitation, a window growing approach is used. Here, a minimum sized overlap window is 
used for scale comparison. Progressively, this window size is increased until the correlation between the Mellin 
transforms of both images starts decreasing. The correlation process uses the normalized cross correlation RM between 
the Mellin transform of a window of the observed image, M[I], and the Mellin transform of the expected image, M[t], to 
correlate them: 

u,v u,vu v
M 2 2

u,v u,vu v u v

M [I] M [t]
R

M [I] M [t]

⋅
=

⋅

∑ ∑
∑ ∑ ∑ ∑

        (7) 

 
This term would be maximum if the Mellin transforms of the observed and expected images were the same. The 

overlap window (centered at the observed image) that yields the maximum correlation RM is then obtained, and the 
correspondent value of RM stored. The robot then turns by a small predefined angle and repeats the overlap window 
correlation process. The process goes on as the robot searches in several directions within the tolerance of the odometric 
heading errors. The direction that yields the maximum correlation RM between the Mellin transforms is determined to 
be the correction heading to the target node. In summary, gross adjusting of the robot heading is done using an 
Extended Kalman Filter and odometric measures of distance/rotation, however the actual (fine) tuning of the desired 
direction must be done using the Mellin transform. The main reason to use dead reckoning is to speed up the process by 
reducing the heading search space for the Mellin transform. 

Figure 6 shows three images considered in determining the correct direction to the parent node from a child node. 
Figure 6(a) shows the view that the robot would see if it were at the parent node directed away from the child node, i.e., 
facing 180° from the direction of the child node. Figure 6(b) shows a view from the child node not pointing in the 
correct direction to the parent node (with the robot slightly misaligned to the left). Figure 6(c) shows a view from the 
child node while pointing in the correct direction to the parent node. 

 

        
(a)          (b)                   (c) 

Figure 6. Determining appropriate view to parent node 
 
It is found that the correlation RM between the Mellin transforms of Figures 6(a) and (c) is much higher than the one 

obtained from Figures 6(a) and (b). This can be seen by the peak value of the product Mu,v[I] and Mu,v[t], which is 
2.26×1015 in the first case and only 1.15×1014 in the second, almost a factor of 20. It is clear from this example that the 
correct direction to the parent node shown in Fig. 6(c) may be accurately determined using Eq. (7). 

Once the direction to the parent node is established, the robot moves toward the node. Again, visual servo control 
based on the correlation between the current image and the image the robot would see (if it were at the parent node 
pointed in the same direction) governs if the robot has reached the parent node. Unlike the correlation between Mellin 
transforms RM, this is a correlation between the entire image observed and the one that would be expected. The cross 
correlation value is then continuously evaluated as the robot moves on a straight line towards the parent node. When 
this correlation starts to decrease, it is expected that the robot has reached the target node. 

Finally, the robot finishes mapping the entire environment when all new potential child nodes have been explored. 
After that, the robot only needs to use the third component of the algorithm to travel from parent to child nodes and 
vice-versa within the mapped environment. 

Note that several nodes are identified, a few of them redundant. This can be calibrated by not exploring new child 
candidate nodes that are too close to previously identified nodes. Post-processing on the final graph can also be 
performed to eliminate some redundant nodes by bridging nodes. Current work to develop an algorithm that bridges 
nodes in a graph while avoiding obstacles between them has been performed, based on genetic algorithms. The key idea 
is to find a set of new link candidates (bridges) to be added that would most efficiently reduce the average traveled 



distance between any two nodes in the graph. This set would form a cromossome in a classical genetic algorithm, where 
the fitness function would be inversely proportional to the average traveled distance, along the graph, between each and 
every node pair. Then each new link candidate from the optimal set is explored by the robot to check for the presence of 
walls or furniture. If the path between such nodes is clear, then a new link is added to the graph. Experimental results 
have validated this approach, but they are out of the scope of this work. 

 
6. Experimental results 

 
The results of the experimental exploration of a flat-floored apartment environment are shown in Fig. 2. Each node 

is marked and linked to its parent/child nodes. This map may then be used for navigation by the robot within its 
environment. Note that the walls and furniture were later added to the figure, since the absence of range sensors or 
stereo vision prevents the robot from identifying their exact location. However, the robot is able to recognize its 
environment, including walls and furniture, from the set of panoramic images taken at each landmark. At the end, the 
robot does not have a standard floor plan of the environment, instead it has a very unique representation consisting 
solely of a graph with panoramic images taken at each node, which is enough to localize itself. This significantly 
reduces the memory requirements and ultimately the computational cost of such mobile robots, particularly since Mellin 
transforms are considerably fast and efficient. In addition, it is possible to include some human interaction during the 
mapping process, giving names to each environment the robot explores (such as “kitchen”, “living room”, etc.), which 
would improve the functionality of the system to be used as, e.g., a home service robot. 
 
7. Conclusions 
 

In this work, an information-based iterative algorithm has been presented to plan the visual exploration strategy of 
an autonomous mobile robot to enable it to most efficiently build a graph model of its environment using a single base-
mounted camera. Experimental studies have been conducted to demonstrate the effectiveness of the entire algorithm. It 
was found that this algorithm allows a mobile robot to efficiently localize itself using a limited sensor suite (consisting 
of a single monocular camera, contact sensors, and an odometer), reduced memory requirements (only enough to store 
one 2-D panoramic image at each node of a graph), as well as modest processing capabilities (due to the computational 
efficiency of Mellin transforms and the proposed information-based algorithm). Therefore, the presented approach has a 
potential benefit to significantly reduce the cost of autonomous mobile systems such as indoor service robots. 
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