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Abstract. The present algorithm consists in a simulation program with modular 
characteristics. The modules are composed for specific routines related with the components 
of the system. The input data file composes of the working fluids, the characteristics of each 
component and the known variables. Based on the index of mass rate vectors, the indexes of 
mass rate are generated upstream and downstream of each node. The conservation laws are 
used to compose, automatically, the system of equations, which are solved by Newton 
Raphson method for multiple equations and unknowns. 
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1. INTRODUCTION 
 

The expression “Simulation of Thermal Systems” presumes knowledge of the 
performance characteristics of all components as well as equations for thermodynamic 
properties of the working substances. 

The simulation of thermal systems can be applied to heating and cooling plants and it 
consists of calculation of all operating variables such as temperatures, pressures, specific 
energy and fluid flow rates at a given time. The equations for performance characteristics of 
the components and thermodynamic properties, along with energy and mass balances, form a 
set of simultaneous equations relating the operating variables. The mathematical description 
of system simulation is that of solving the simultaneous equations, many of which may be 
nonlinear. 

Several users need to simulate thermal system, such as chemical and process industries, 
air conditioning engineers and thermal power plants. Evans et. al. (1968) has shown that 
chemical and industries process have used generalized programs for several years. Several 
programs have been developed in the industry. Examples of these programs are: PACER 
(Purdue-Dartmouth), MAEBE (University of Tennessee), COPE (Esso Research and 
Engineering), CHEOPS (Shell Oil), PEDLAN (MobilOil) and FLEXIBLE FLOWSHEET (M. 
W. Kellogg). 

Stoecker (1971) developed a generalized program for steady state system simulation. 
However, the program of this author does not generate the system of equations by specifics 
routines. Reynolds (1979) developed equations to compute the physical and thermodynamic 
properties of fluids. Klein and Alvarado (1993) developed the program EES (Engineering 
Equation Solver) for the solution of a set of algebraic equations and thermophysical property 



functions useful for engineering calculations. Nevertheless, this program do not generate the 
system of equations. 

This work shows the computational algorithm used to simulate, in steady-state, any 
thermal system. The algorithm composes by specific subroutines that compute physical and 
thermodynamic properties and others subroutines, that apply the conservation laws, are used 
to form, automatically, the system of equations, which are solved by Newton-Raphson 
method for multiple equations and unknowns. 

This paper concludes presenting a simulation of a thermal system (regenerative cycle) to 
compute its variables. 
 
2. DATA FILE CONSTRUCTION 
 

The system of equations is generated through the following data file (See Fig. 1) and the 
nomenclature of the data file inputs is defined in Table 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1- Data File. 
 

Table 1. Nomenclature of the inputs in Data File. 
 

Data File Inputs Nomenclature 
Number of nodes  nn 
Number of pipes np 
Number of components nc 
Number of known pressures npk 

  nn   np   nc 
 
  npk inpk1 pk1 inpk2    pk2   . . .  inpkn   pkn 
  ntk     intk1    tk1     intk2    tk2    . . .  intkn    tkn 
  nqk    inqk1 qk1    inqk2   qk2   . . .  inqkn   qkn 
 
  zn1 zn2  . . .  znn 
 
  unp1   dnp1   Dp1   Lp1   Sk1   rp1 
  unp2  dnp2   Dp2   Lp2   Sk2   rp2 
                              . 
                              . 
                              . 
  unpn  dnpn   Dpn    Lpn   Skn  rpn 
 
  efc1  

1cW!   
1cQ!   isob1  isot1  isos1  isoh1 

 
  efc2  

2cW!   
2cQ!   isob2  isot2  isos2  isoh2 

                               . 
                               . 
                               . 
  efcn  

ncW!   
ncQ!   isobn  isotn  isosn  isohn 

 
  unc1  dnc1  nuc2  ndc2 . . . uncn  dncn 
 



Node index indicating the location where the pressure n is known inpkn 
Known pressure n pkn 
Number of known temperatures ntk 
Node index indicating the location where the temperature n is known intkn 
Known temperature n tkn 
Number of known mass quality nqk 
Known mass quality n qkn 
Node index indicating the location where the mass quality is known inqkn 
Node n level znn 
Upstream node of the piping n unpn 
Downstream node of the piping n dnpn 
Diameter of the pipe n Dpn 
Length of the pipe n Lpn 
Sum of all factors of located loss Skn 
Roughness of pipe n rpn 
Efficiency of the component n efcn 
Power of the component n 

ncW!  

Rate of heat transfer of the component n 
ncQ!  

If the transformation in the component n is isobaric isobn 
If the transformation in the component n is isotherm isotn 
If the transformation in the component n is isoentropic isosn 
If the transformation in the component n is isoenthalpic isohn 
Number of points of the characteristic curve of the component n npcn 
If (efcn > 1) then npcn = efcn and read x1  y1 , x2  y2 , ... , xn  yn ------ 
Coordinate in the x direction of the characteristic curve xn 
Coordinate in the y direction of the characteristic curve yn 
Upstream node of  the component n uncn 
Downstream node of  the component n dncn 
 

Based on the index of mass rate vectors, the indexes of mass flow rate are automatically 
generated upstream and downstream of each node. 
 
3. SYSTEM OF EQUATIONS 

 
The system of equations for a generic thermal system is given as follows: 

    
Conservation of mass: 
 

0
11

=∑−∑ dnmunm !!                          (1.1) 

0
22

=∑−∑ dnmunm !!                        (1.2) 

                     . 
         .  

. 
0=∑−∑

nn dnmunm !!                                 (1.nn) 

 
The subscripts unn and dnn indicate, respectively, the upstream and downstream positions 

of the node n and m!  represents the mass flow rate. 



Energy equation: 
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The subscripts are defined in Table 2. 

 
Table 2. Nomenclature of the subscripts. 

 
Subscripts Nomenclature 

Component n cn 
Downstream of  the component n dcn 
Upstream of  the component n ucn 
Upstream of  the pipe n upn 
Downstream of  the pipe n dpn 

 
where Q!  is the rate of heat transfer and W! is the power. The rate of heat transfer Q!  and the 
power W!  are adjusted, respectively, based on the characteristic curve of each component, as 
follow: 

CnmnBnmnAQ
nC

++= !!! .2.                 (2.1) 

 
GnmnFnmnEcW

n
++= !!! .2.                     (2.2) 

 
Considering  nn + nc + np = n, the equations (1) to (n) can be written in implicit form as 

follows: 
 

( ) 0,...,2,11 =nVVVF                    (3.1) 



( ) 0,...,2,12 =nVVVF                    (3.2) 
. 

         . 
                   . 

( ) 0,...,2,1 =nVVVnF                   (3.n) 
 
Considering the initial guessed values for the variables as: 0,...,0

2,0
1 nVVV , the Taylor-

series expansion for (Eqs. 3.1-3.n) generate the set of simultaneous equations as follow 
(Stoecker, 1980): 
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where
j

i

V
F

∂
∂  represents the partial derivative of the function i regarding to variable j. These 

partial derivatives are calculated numerically. 
 
The solution of the linear system (4.1) to (4.n) are the variables: 
 

1
0

11 VVV −=∆                     (5.1) 

2
0
22 VVV −=∆            (5.2) 

            . 
            . 
            . 

nVnVnV −=∆ 0                     (5.n) 
 
   The new guessed values for the variables are: 
 

111 VoldVnewV ∆−=                         (6.1) 

222 VoldVnewV ∆−=                   (6.2) 
                  . 

           . 
          . 

nVold
nVnew

nV ∆−=                    (6.n) 



4. THE SOLUTION PROCEDURE 
 

The procedure for solving the equations (4) to (6) is an iterative one in which the 
following steps are followed. The solution procedure is used to solve the non-linear set of 
equations (1.1) to (1.n). It is called Newton-Raphson method for multiple equations and 
unknowns. 

 
The generalized computational algorithm is followed: 
 

1. The input Data File is read 
2. The indexes of mass rate are generated upstream and downstream of each node 
3. The thermodynamic properties, where the states are defined, are calculated 
4. All the variables of the system are guessed 
5. The thermodynamic properties, after the states are known, are calculated 
6. The state in the outlet of each component is defined based on the thermodynamic 

transformation (isothermic, isoenthalpic, isentropic and isobaric) 
7. The residue equations F1 to Fn are calculated 
8. The partial derivatives are calculated 
9. The non-linear system (1.1) to (1.n) is solved 
10. The new guessed values for the variables are determined until convergence be reached. 
 
5. THE CALCULATION PROCEDURE OF FLUID PROPERTIES  
 

The thermodynamic properties of the working fluids for the saturated and superheated 
states are determined as follow: 
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where: 

u - internal energy 
u0 - reference value 

0
vC   - Ideal gas specific heat 

ρ - vapor density 
p  - pressure 
T  - temperature. 

 
),( ρ+ρ= TFRTp                                 (8) 

 
where: 
 

 R   -     constant of the compressive substance 
F(T, ρ) -     function of the variables ρ , T and the working fluid. 
 
The following equations determine the enthalpy and entropy: 
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The latent heat (hlv) is determined from Clapeyron equation, as: 

 

satdT
satdp

lvTvlvh =                              (11) 

 
The entropy and internal energy of vaporization are calculated as: 
 

T
lvh

lvs =                                         (12) 

 

lvvsatplvhlvu −=                                  (13)
       

The equation in the generalized form is determined as: 
 

),( ρ= Tpp                                         (14) 

The ideal gas specific heat is determined as a function of temperature: 

)(00 TvCvC =                                   (15) 
 

The saturation pressure is: 

)( satTsatpsatp =                        (16) 

The saturated liquid density is determined as: 

)( satTll ρ=ρ                              (17) 
 

The thermodynamic properties in the liquid region are determined as follow: 
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Where: 
      f  - Generalized property that can be u, h, s or ρ 
     fp  - Function of p and T calculated, respectively, by equation (5), (7), (8) and (13) 
     fps  - Value of the saturation temperature, obtained by equation (14) and 
     fes  - This is the saturation value of f at temperature T, determined by: 

a. Calculate 
satdT
satdp

 from equation (11) 

b. The saturated vapor properties uv , hv , sv and ρv using the equations (7), (9), (10) and (14) 



c. The saturated liquid density is determined by the equation (17) 
d. hlv and slv are calculated using equations (11) and (12) 
e. The saturated liquid properties ul , hl , sl and ρl are calculated by the subtractions uv - ulv , 

hv - hlv, sv - slv and ρv - ρlv, respectively. 
The equations (14), (15), (16) and (17) are adjusted by the least square method and data 

are available from Reynolds (1979). These equations are differentiated and integrated to 
obtain the thermodynamic properties. The thermodynamic properties, written in the implicit 
form, are determined by Newton Raphson method for multiple equations and unknowns. 

The separated flow model, described by Collier (1972), is used to calculate the pressure 
gradient for two-phase flow, as follow. The properties of the two phases are: vlvl ννρρ ,,, . 
The vapor and liquid mass flow is defined as: 

GXG =ν  and vl GGG −=                   (19) 

The mean velocities of vapor and liquid phases and the Reynolds number are: 
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The friction factors for the vapor phase flow fvs and liquid phase flow flv are calculated 

based on the Colebrook formula. 

The pressure gradients on the vapor and liquid phases and the total pressure gradient are: 
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where 2.1 φ+φ+=ψ Cv , 
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6. NUMERICAL RESULTS  

The regenerative cycle, shown in Figure 3, is used to analyze the output variables. In this 
thermal cycle, the nodes upstream and downstream of each component are randomly chosen. 

 
Figure 3 - Regenerative Cycle. 



The Figure 4 shows the input data file for the cycle shown in the Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4 - Input data file for the cycle of Fig. 3. 
 
The thermodynamic properties of each node are shown in Tab. 3 and the heat transfer rate 

and the power at each component are shown in Tab. 4. 
 

Table 3. Thermodynamic properties. 
 

Node p MPa T [°°°°C] s [KJ/Kg°°°°K] h [MJ/Kg] ρρρρ [Kg/m3] 

1 1,4597 600,0 7,850537 3,693896 3,6472 
2 1,0000 554,1 7,908870 3,596024 2,6345 
3 0,0050 86,21 8,697066 2,661534 0,0301 
4 0,0050 32,86 0,473967 0,137166 994,54 
5 1,5289 33,00 0,476377 0,139222 995,33 
6 1,5174 33,00 0,476379 0,139212 995,33 
7 1,5174 90,00 1,191911 0,378140 965,96 
8 0,9988 179,8 2,137333 0,762297 887,08 
9 0,0081 41,74 2,460843 0,762297 0,2284 

10 1,4597 90,00 1,191969 0,378103 965,93 
11 0,0050 41,74 8,447971 2,577670 0,0344 
12 0,9988 554,1 7,909395 3,596034 2,6315 
13 1,3745 600,0 7,878890 3,694553 3,4327 
14 0,0339 32,86 4,743293 0,137235 994,61 

 
 
 
 
 

  14  6  6 
 
  2  2  1E6  3  0.005E6 
  3  1  600  7  90  5  33 
  2  8  0  4  0 
 
  5  4  4  3  0  0  0  -1  -1  5  3  0  5  0 
 
  7  10  0.2  500  0  1E-5  
  5  6    0.2  500  0  1E-5  
  9  11  0.2  10    0  1E-5  
  2  12  0.2  15    0  1E-5  
  1  13  0.2  15    0  1E-5  
  4  14  0.2  15    0  1E-5  
 
  0.9  0  3E6  0  1  1  1 
  0.8  3E6  0  1  1  0  1 
  0  0  -3E5   0   1  1  1 
  9  5  233  10 232   20 231  30 230  40 225  50 220  60 210 70 190  85 157 
  0  0  0  0  1  1  1 
  0  0  0  1  1  1  0 
 
  10  1  1    13  2  2    13  3  2    6  7  5    12  8  5    14  5  4   
 
  11  4  3    3  4  3    8  9  6 
 



Table 4 - Rate of heat transfer and power. 
 

 Component Q!  [Watts]  W!  [Watts] 
1 7,67592x107 0 
2 0 2,20902x107 
3 -5,82745x107 0 

 
The Table 5 shows the mass rate indexes, the mass rate and the upstream and downstream 

nodes. 
Table 5 - Mass rate indexes. 

 
Mass rate index, its value [ton/h] and upstream and downstream nodes 

[ nodeu - noded ] 
1 83,34  [7 -10] 6 83,34  [4 - 14] 11 7,026  [12 - 8] 
2    83,34 [5 - 6] 7 83,34  [10 - 1] 12 83,34  [14 - 5] 
3 7,026  [9 - 11] 8 7,026  [13 - 2] 13 7,026  [11 - 4] 
4 7,026  [2 - 12] 9 76,31  [13 - 3] 14    76,31  [3 - 4] 
5 83,34  [1 - 13] 10    83,34  [6 - 7] 15    7,026  [8 - 9] 

 
 
7. CONCLUSIONS  
 

The present algorithm calculates the operation variables for any thermal system, as such, 
the new values for the variables when the system operation is modified.  

The Newton-Raphson technique, while a bit more complex, is quite powerful. To large 
systems, the number of equations becomes so large that the n x n matrix needed for solving 
the equations requires excessive memory space in the computer. Techniques for solving linear 
simultaneous equations that have sparse matrices are called for. Another approach is to break 
the system apart into smaller subsystems, which can be simulated individually and their 
results tied together by successive substitution. 
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