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Abstract 

Slow strain rate testing is widely used on stress corrosion cracking research as the basic 

experimental technique to promote the incidence of cracking and to determine the ranking of 

susceptibility of different alloys in several corrosive environments. With this methodology, 

however, the assessment of "threshold values" to be used as design parameters is not a simple task 

in the present state of art of the corrosion area. This limitation induces the use of the SSR testing as 

"go-no go" test for materials selection and some basic information required, for instance, time to 

failure in service, can not be inferred by this approach. The most important reason for the limitation 

described is the complexity of stress corrosion mechanism that involves the conjoint action of 

mechanical and electrochemical processes. On the present work, a methodology for modeling SSR 

testing based upon thermodynamics of continuum solids and elasto-plastic damage is proposed. In 

this macroscopic approach, besides the classical variables (stress, total strain, plastic strain), an 

additional scalar variable related with the damage induced by stress corrosion is introduced. An 

evolution law with environment dependent parameters is proposed for this damage variable. The 

model accounts for the stress corrosion effect through a reduction of the mechanical resistance of 

the material induced by the damage variable. The model prediction is compared with the curves 

obtained experimentally in different acid solutions at room temperature showing a good agreement. 

The alloy/environments system is 304 austenitic stainless steel/acid chloride solutions. 
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Nomenclature 

SSR =  slow strain rate test 

CL =  constant load test 

D  =  damage (related to the loss of mechanical strength), dimensionless 

L0  = gauge length, mm 

A0  =  cross-section, mm2

σ   = stress, MPa 

σp  = yield stress, MPa   

Y   = elastic limit, MPa 

ε  = deformation, dimensionless 

εp  = plastic deformation, dimensionless 

E  = Young modulus, GPa 

K  = material constant, MPa.s 

N  = material constant, dimensionless 

v1  = material constant, MPa 

v2  = material constant, dimensionless 

η  = material constant, MPa.h-1

S  = parameter  dependent on the material and environmental conditions, MPa.s 

R  = parameter dependent on the material and environmental conditions, dimensionless 

T  = time, s or h 

a  = damage coeficient, dimensionless 
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Subscripts 

P  relative to plasticity 

e         relative to elasticity 

r          relative to rupture 

CR relative to critical value 

0  relative to initial conditions 

 

Introduction 
 

Stress corrosion cracking (SCC) remains as one of the most severe limitations for the use of 

austenitic stainless steels on chemical and petrochemical industries. The combined effect of 

corrosion and mechanical stress imposed on the material is extremely complex. The mechanisms 

proposed to explain microscopically the cracking initiation and propagation processes are not able 

to elucidate all aspects of this phenomenon in different metal/environment systems (Newmann, 

1995). Therefore attempts to predict this phenomenon in macroscopic scale models are advisable. 

Slow strain rate and constant load tests are widely used on stress corrosion cracking research as the 

basic experimental technique to promote the incidence of cracking and to determine the ranking of 

susceptibility of different alloys in several corrosive environments. With this methodology, 

however, the assessment of "threshold values" to be used as design parameters is not a simple task 

in the present state of the art of material research. This limitation induces the use of the SSR and CL 

testing only as "go-no go" test for material selection. Some basic information required, for instance, 

time to failure in service, that can not be inferred from this procedure. The most important reason 

for the limitation described is the complexity of stress corrosion mechanism that involves the 

conjoint action of mechanical and electrochemical processes. 

Despite the lack of definition of a fundamental mechanism for stress corrosion cracking, the 

evaluation of the susceptibility to cracking is a basic requirement for safe and economic operation 
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of many types of equipments. This objective is accomplished by the execution of a set of laboratory 

tests that simulates the conditions of SCC incidence. In this situation, slow strain rate testing is the 

most important technique used to rank the susceptibility of different materials in a specific 

environment. Constant load and constant displacement tests are frequently used as auxiliary 

techniques in order to obtain more detailed information about the resistance of the material. These 

tests, however, do not provide basic parameters to be directly used in engineering design or to 

determine the “safe life” of equipment. This limitation can be explained as a consequence of the 

nonexistence of a model to interpret the macroscopic behavior of the material registered during the 

SCC tests. 

The most interesting possibilities of macroscopic modeling of stress corrosion testing are provided 

by fracture mechanics and continuum damage mechanics. In the case of continuum damage 

mechanics, the damage is taken into account through an internal variable related to the loss of 

mechanical strength of the system due to the damage (geometrical discontinuities induced by the 

deformation process). Besides, this approach introduces the possibility of considering important 

physical phenomena like hardening, plasticity, viscoplasticity and corrosion.  

 

Experimental procedures 

 

Slow strain rate (SSR) and constant load (CL) tests were performed at different acid environments 

with chloride ions. In these tests it was used an AISI 304 stainless steel with the chemical 

composition given in Table 1. 

 

Element C S Ni Si Mo Mn Cr Fe 

Wt % 0.06 0.005 8.03 0.47 0.03 1.40 18.95 Bal. 

Table 1. Composition of AISI 304 austenitic stainless steel (wt%). 
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The steel was previously normalized at 1050°C for 30 minutes in argon atmosphere furnace and 

water-quenched. The surface of the samples was ground to grit 600 with emery paper. After surface 

preparation, the samples were washed with distilled water and alcohol, and dried with hot air. The 

round specimens were designed according to ASTM E-8 standard with 4 mm nominal diameter and 

16 mm gauge length. The samples were loaded with 1.5 yield stress in the constant load testing and 

the strain rate used on slow strain rate testing was 63 10−× s -1. The aerated solutions were prepared 

from 1 M sodium chloride acidified with 1 M chloride acid to adjust the desired pH. All the 

measurements were performed at room temperature under free corrosion potential. 

 

Theoretical modeling 

 

In this paper, a theoretical analysis, developed within the framework of continuum damage 

mechanics by (Lemaitre et al., 1990), is performed to provide a better understanding of the results 

from slow strain rate test and constant load test. All the proposed equations can be developed from 

thermodynamic arguments that are not presented here for sake of brevity. A more detailed 

discussion may be found elsewhere (Bastos, 1999; Vera Jr., 2002). 

Consider as a system a bar-type tension specimen with gauge length  and cross-section 

submitted to a prescribed displacement. The basic idea is to introduce a macroscopic variable 

oL 0A  

[ ]D 0,1∈ , related to the loss of mechanical strength of the system due to the damage (geometrical 

discontinuities induced by mechanical deformation and the simultaneous corrosion processes). If 

, the bar is considered “virgin” and if DD 0= 1= , it is “broken” (it can no longer resist to 

mechanical loading). The following model is proposed to describe the coupling between 

elastoplasticity and the damage induced by the stress corrosion phenomenon: 

 

( ) ( )p 1 -  D E  -  σ = ε ε    (1) 
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( ) ( )2 p-v
1Y  1 -  D v 1- e  ε⎡= ⎣ p

⎤+ σ ⎦    (2) 

N
pd - Y  

dt K
ε σ

=    (3) 

( )
( ) ( )

R
2

P
a

dD S   
dt 1- DE 1- D

⎛ ⎞ησ σ
= ε + ⎜ ⎟⎜ ⎟

⎝
&

⎠   
 (4) 

where  (x max 0, x= )  and the variables σ , , ε pε  are defined as follows 

 

P
P E

o o

LF L; ; ;  L L L
A L L

ΔΔ
σ = ε = ε = Δ = Δ + Δ P    (5) 

 

with ΔLe being the elastic or reversible part of ΔL and ΔLp the plastic or irreversible parcel of ΔL.  

These variables coincide, respectively, with the nominal axial stress, the axial strain and the axial 

plastic strain while the system is submitted to a uniaxial stress state. In the presence of macro cracks 

the actual state of stress is no longer uniaxial and the variables σ , , ε pε  must be interpreted as 

global parameters.  is an auxiliary variable related to the hardening induced by plastic 

deformation. , , ,  

Y

E K N 1v , 2v , pσ ,  and a are material constants and S ,  parameters which 

depend on the material and environmental conditions. Equations 

η R

(1) and (2) will be called the state 

laws and equations (3) and (4) the evolution laws. Normally the evolution laws are used considering 

a “virgin” initial state: ( )p t 0 0ε = =  and ( )D t 0 0= = . From equations (2) and (3) we have: 

 

pdε
= 0  if  σ Y

dt
≤    (6) 

( ) ( )2 p

1
N

-v p
1 p

d
  1 -  D v 1- e  K  ,  if  Y

dt
ε ε⎛ ⎞⎡ ⎤σ = + σ + σ >⎜ ⎟⎣ ⎦ ⎝ ⎠

  (7) 
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The variable  is the elastic limit, which is affected by the plasticity phenomenon (that causes an 

increasing of the elastic limit 

Y

p
p

dY 0   D [0,1],   0
d

⇒ ≥ ∀ ∈ ∀ ε ≥
ε

) and by the damage (that causes a 

decreasing of the elastic limit p
dY 0   D [0,1],   0
dD

⇒ ≤ ∀ ∈ ∀ ε ≥ ). Equation (7) with D 0=  is a 

classical expression for elasto-viscoplastic materials (Lemaitre et al., 1990). The experimental 

identification of the parameters , ,  and K N 1v , 2v pσ  is reasonably simple and it is described in 

this reference. The parcel ( )2 p-v
1v 1-  e ε⎡

p
⎤+ σ⎣ ⎦  models the non-linear relationship between the 

elastic limit Y  and the plastic deformation pε . This expression is verified experimentally and is 

found in literature (Lemaitre et al., 1990). 

The term ( )
1

N
pK d / dtε  in equation (7) is related to the viscosity-hardening and is responsible for 

the dependency of the elastic limit on the rate of plastic deformation. The constant pσ  corresponds 

to the elastic limit when the strain rate is very small ( )pε 0→& . 

The variable D  is related to the reduction of the free energy of the mechanical system due to the 

damage induced by the deformation process and corrosion. From (2), it is simple to verify that 

 when D . It is also possible to verify from Y → 0 1→ (7) that 0σ→  when . The evolution 

law 

D →1

(4) for the damage variable may be divided in two parts: one related to the plastic deformation 

and other related to the stress corrosion cracking. 

 

( )
( ) ( )

R2
P

a

stress  corrosionplasticity

dD S   
dt 1- DE 1- D

⎛ ⎞ησ σ
= ε + ⎜⎜

⎝ ⎠
&

14

⎟⎟
2431442443

   (8) 

 

where the first parcel is the plastic damage and the second corresponds to the corrosion damage. If 

the rate of plastic deformation is equal to zero, there is no evolution in the plastic damage 

 

 7



( )
2• P

plast aD    
E(1- D)
ησ

= ε& 0=    (9) 

 

Supposing that the plastic damage is negligible in a constant load test ( )0  constantσ = σ = , it is 

possible to find the analytical solution of the differential equation that governs the damage 

evolution  

( )

R

o
corr

SdD  D   
dt 1 D

⎛ ⎞σ
= = ⎜ ⎟⎜ ⎟−⎝ ⎠

& with    (10) ( )D t 0 0= =

 

The solution of the equation (10) is 

 

( )( )([
1

R 1R
o

D(t) 1- 1- t R 1 S += + σ )]          (11) 

 

Since rupture occurs when , it is possible to compute the time  until the rupture D 1= rt

( )
1

R 1

r

tD 1- 1-
t

+⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 with ( )-R

r o
1t S

R 1
= σ

+
   (12) 

 

The evolution law for the stress corrosion damage would be similar to the creep damage law 

proposed by (Kachanov, 1986).  

From the equations here proposed it is possible to observe that during the slow strain rate tests the 

damage variable increases slowly until almost the end of the test ( )rt t=  when it increases very fast 

until rupture ( , as it is shown in Fig.1.  )D 1=

If this kind of damage behavior is observed, it is usual to consider a critical value  of the 

damage variable, beyond which the evolution to the value toward 

crD

D 1=  is so fast that it can be 
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considered instantaneous. If, in a conservative approach, the failure is considered to occur when 

, the following expression is obtained  crD D=

 

( ) ( )

1
R 1

R 1
-Rcr

cr o

tD 1- 1-
1 D

t S
R 1

+

+

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟=
⎢ ⎥⎜ ⎟+

+ σ⎢ ⎥⎜ ⎟
⎝ + ⎠⎣ ⎦

with ( ) ( )
R 1

-Rcr
cr o

1- 1-D t = Sσ
R 1

+

+
  (13) 

 

 

Figure 1. Schematic stress corrosion damage evolution in a slow strain rate test. 

 
Equation (12) or (13) allows to obtain curves of the damage evolution for constant load tests under 

different conditions. Examples of these curves are shown in the next section. It is interesting to 

remark that the parameters  and S  are not independent and are related to  through relation 

presented in

R crt

(13). The experimental determination of the parameters  and  for a given pH is 

possible from an unique slow strain rate test and one constant load test and from a single constant 

load test the value of  is obtained. Since 

R S

crt oσ  and  are fixed, the parameters  and S  will be 

related through equation 

t R

(13). Hence, it is only necessary to identify the value of  in a tensile test. R
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To understand how the model describes the evolution of the deformation in a constant load test 

, it is necessary to derive equation ( o  constantσ = σ = ) (1). 

 

( ) ( ) ( ) ( ) ( )

( ) ( )

p p p

p2

σ = 1 - D  E ε - ε σ = 1 - D  E ε - ε DE ε - ε

σ σDε = + +ε
1 - D  E 1 - D  E

⇒ −

⇒

&& &&

&&
& &

  (14) 

 

Since σ is a constant and hence , it comes that  0σ =&

( ) p2

D  
1 -  D  E

σ
ε = + ε

&
& &    (15) 

 

As it is shown in the next section, the corrosion elongation curve is very well described by this 

model, also considering in the analysis the important parameters as steady state elongation rate, 

time to failure, etc. 

 

Comparison with experimental results 

 

To evaluate the adequacy of the model presented, samples of austenitic stainless steel were tested in 

constant load test and slow strain rate test, and the experimental results were checked with the 

model. The model parameters identified experimentally for this alloy are given by: 

E= 193.000 [MPa]; K = 95.336 [MPa s], N = 165; a = 52; η = 0.013 [MPa h-1].  Based on 

experimental observations, it was adopted the following critical value for the damage:  

Dcr = 0.13. 
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Constant load tests 

 

In this section, the results of constant load (CL) tests performed in different environments are 

compared with the model previsions. For the CL tests, equation (1) was rewritten as ( )tε  then 

the curves were calculated using equations (2), (3), (4) and the next equation  

( ) p  
1 -  D E

σ
ε = + ε          (16) 

The ordinary differential equations (3) and (4) were solved using embedded 4th order Runge-

Kutta Cash-Karp method with 5th order error estimate. The variable order Runge–Kutta method 

is a family of explicit Runge–Kutta formulas. Each member of the family consists of a fifth-

order formula that includes embedded formulas of orders from 1 to 4. A proper order formula is 

chosen by calculating the solution at several different orders before the full Runge–Kutta step is 

computed. The detailed algorithm is included in the work of (Cash et al., 1990). 

Figure 2 shows the theoretical and experimental corrosion elongation curves at a constant initial 

stress ( =375 MPa) obtained in the air, and in aerated solution prepared from 1 M NaCl 

acidified with 1 M HCl to adjust the desired pH to 1.00 and 0.50. The model prevision is in very 

good agreement with the experimental results. 

oσ
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Figure 2. Elongation curves in different environments with initial σ=375 MPa. 

 

Table 2 shows the fracture time obtained experimentally for different pHs and the theoretical value 

 obtained from solution of equation rt (13). 

 

Condition Experimental (h) Model (h) 

pH=0.50 372  372  

pH=0.00 90.3  90.0  

Table 2. Experimental and theoretical fracture time. 
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Figure 3 shows the theoretical ( )0 log tσ × r  curve. The behavior is almost linear, which is in 

agreement with experimental observations (Nishimura et al., 2003) for austenitic stainless steel in 

acid environments at room temperature. 
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Figure 3. Model prevision of relative stress corrosion cracking resistance. 
 

 

Slow strain rate tests 

 

In this section, the experimental stress-strain curves obtained in slow strain rate tests performed in 

different environments are compared with the model previsions. Figures 4, 4 and 6 show the 

theoretical and experimental stress-strain curves for two different strain rates  s -63 10ε = ×& –1 and 

 s -52.8 10ε = ×& –1 obtained in the air and in aerated solution prepared from 1 M sodium chloride 

acidified with 1 M chloride acid to adjust the desired pH to 1.00 and 0.50. In SSR test the 

elongation is given by equation (17).  Figures 4-6 show the stress–strain curves for 6ε=3 10−×&  s –1 

and  s -52.8 10ε = ×& –1 obtained in the air, and in aerated solutions with pH´s 1.00 and 0.50. The 

model prevision is also in very good agreement with the experimental results.  

.
tε ε=             (17) 
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In this case, the ( )tσ  curves were calculated using equations (1), (2), (3) and (4). The ordinary 

differential equations (3) and (4) were solved using the same Runge-Kutta algorithm used in CL test 

simulations.  
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Figure 4. Stress–strain curves for 6

1=3 10−ε ×&  s –1 and  s -5
2 2.8 10ε = ×& –1 obtained in the air 

  

EXPERIMENTAL CURVES - PH = 1.0
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Figure 5. Stress–strain curves 6
1=3 10−ε ×&  s –1 and  s -5

2 2.8 10ε = ×& –1. pH=1.0. 
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EXPERIMENTAL CURVES - PH=0.5
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Figure 6. Stress–strain curves for 6
1=3 10−ε ×&  s –1 and  s -5

2 2.8 10ε = ×& –1. pH=0.5 
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Figure 7. Comparison with experimental results. Stress–strain curves for  s 6
1=3 10−ε ×& –1 . pH=1.0. 
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COMPARISON WITH EXPERIMENTAL RESULTS - PH = 0.5 - STRAIN RATE 1 
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Figure 8. Comparison with experimental results. Stress–strain curves for  s 6
1=3 10−ε ×& –1 . pH=0.5. 
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Figure 9. Comparison with experimental results. Stress–strain curves for  s 6
1=3 10−ε ×& –1 . Air. 
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COMPARISON WITH EXPERIMENTAL RESULTS - PH = 1.0 - STRAIN RATE 2
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Figure 8. Comparison with experimental results. Stress–strain curves for  s -5
2 2.8 10ε = ×& –1. 

pH = 1.0. 

 

 

COMPARISON WITH EXPERIMENTAL RESULTS - PH=0,5 - STRAIN RATE 2
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Figure 9. Comparison with experimental results. Stress–strain curves for  s -5
2 2.8 10ε = ×& –1. pH=0.5.  
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Figure 10. Comparison with experimental results. Stress–strain curves for  s -5
2 2.8 10ε = ×& –1 .  

Air. 

 

Figure 11 shows the damage evolution computed for the SSR tests performed at different 

environment with  s 
6

1=3 10−ε ×& –1. From this calculation it is possible to observe that the corrosive 

environment strongly affects the damage evolution. This parameter shows explicitly the evolution 

of damage due to stress corrosion along the testing. 
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Figure 5. Damage evolution for different environments. 
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The damage variable presents a stable evolution until a critical experimental value . After 

this critical value is reached, the damage increases abruptly until the limit value D 1

crD 0.1≈ 3

=  

corresponding to the fracture. At this final stage, the plastic damage is responsible for the abrupt 

increase of the damage rate. This behavior is in accordance with the accepted model of stress 

corrosion crack growth (ASM Handbook, 1996). 

 

Conclusions  

 

The present paper is a step towards the modeling of stress corrosion cracking phenomenon in 

metallic materials by using Continuum Damage Mechanics. A simple continuum damage model is 

proposed to describe SSR and CL tests in austenitic stainless steels. The model previsions are in 

good agreement with experiments where the alloy/environments system is AISI 304 austenitic 

stainless steel/acid chloride solutions. The results obtained by experiment and predicted parameters 

time of fracture and total elongation are practically identical. Thus, the agreement between theory 

and experiment is very good in tests performed in air or in environments with pH values equal or 

greater than 0.50. The effective development of corrosion damage models not only agree with 

experimental results as a whole, but explicit the actual damage parameters during the usual constant 

load and slow strain rate tests. 
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