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Abstract:  

 

The load on notched mettalic parts are often so high that the local stress calculated from the theory 

of Elasticity, using nominal stress and notch factor is considerably above the yield strength. This is 

especially true for parts designed for only a few thousands load cycles, but may be true for others 

too. Uniformly repeated load cycles impose uniformly repeated strain cycles on the metal at the root 

of the notch, as long as most of the part remains elastic. If the metal at the notch root is strained 

beyond the yield strain it may strain harden and cyclically harden or soften. This work presents a 

simple technique to estimate the inelastic stress and strain histories at the root of the notch of a thin 

metallic plate undergoing a non monotonic loading. An internal  variables theory that accounts for 

the hardening effects induced by cyclic plasticity is considered. Since the stress state is one-

dimensional at the root of the notch, the main idea is to compute the elastic stress and strain from 

the classical  theory of Elasticity and to approximate the real stress and strain using  projection 

techniques (Linear rule and Neuber rule) and an adequate set of elasto-plastic constitutive 



 
 

equations. The predictions of the simplified theory are compared to finite elements simulations 

showing an excellent agreement. The finite elements simulations of a few cycles of loading with a 

refined mesh can take a long time in a ordinary PC while the simulation with the simplified theory 

take a few seconds. An user friendly code was developed to simulate different kinds of problems. 

Examples concerning cyclic loadings in different notched plates are presented and analyzed 

showing the main features of the proposed methodology.. 
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1. Introduction  

 

More sophisticated and realistic inelastic constitutive equations are often considered too 

complex to be used in simple engineering problems.  In the last years, a reasonable effort was done 

to develop simple techniques to solve engineering problems concerning the inelastic behavior of 

metallic structures – a “Inelastic Strength of Materials” (Nina, 1992; Barbosa, 1993; Valente, 1993; 

de Carvalho, 1993; de Freitas Batista, 1994; de Souza Junior, 1998; dos Santos, 1999; Almeida, 

2000; Martins, 2000; dos Santos 2001; Soares Filho, 2003; Rodrigues, 2003; de Queiroz Neto, 

2003). 

The present work is concerned with a simplified technique for the analysis of stress 

concentration in notched metallic plates under tension undergoing elastic or inelastic deformations.   

For thin plates under traction, it is reasonable to suppose that the structure is submitted to a two-

dimensional state of stress. In this case (see figure 1), it is possible to verify that the state of stress is 

one-dimensional at the root of the notch. Hence, simplified procedures can be used to determine the 

stress and strain at this point even if the material is undergoing  nonlinear inelastic deformations. 



 
 

 

Figure 1: Thin plate under tensile loading . 

 

The proof that there is only one nonzero stress component at the root of the notch is very simple 

and is based on the fact that, in a given system that occupies a region Ω  with boundary Γ  of the 

Euclidean space, if f is the external surface force applied on Γ , then, the stress tensor σ  is such 

that  

 

 σ(x,t) n(x,t)=f (x,t)   x ,   t∀ ∈ Γ ∀  (1) 

 

where n(x,t)  is the unit outward normal to Γ  in x . Taking the coordinate system presented in figure 

1 it follows that: 
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it comes that 

 12 22σ (x,t)=σ (x,t)=0  t∀) )  (4) 

 



 
 

2. Elasto-plastic constitutive equations 

 

The following set of elasto-plastic constitutive equations proposed by Marquis, 1979, is 

adequate to model the cyclic inelastic behavior of metallic material at room temperature. Since the 

purpose of this paper is to present a simplified methodology to estimate the inelastic stress and 

strain histories at the root of the notch, only the one-dimensional version of the constitutive theory 

is discussed on this paper.  

 

  (5) P
11 11 11σ  = E(ε -ε )

  (6) P P
g11 11ε  = p S   ; ε (t=0)=0& &

 11
g

11
=

+1  if ( -X) 0S - 1  if ( -X) < 0{ ≥σ
σ  (7) 

  (8) 
.

P
11X  = aε  - bXp   ; X(t=0)=0& &

  (9) 
.

2 1 y yY  = v (v +σ -Y) p   ; Y(t=0)=σ&

 11= -X -Y  0   ; p 0;    p = 0;     p(t=0)=0σΦ ≤ ≥ Φ& &  (10) 

 

where <x> = max{0,x}. ,  and 11σ 11ε p
11ε  are, respectively, the stress, strain and plastic strain 

components in the loading direction. p is the cumulated plastic strain, X is an auxiliary variable 

related to the kinematic hardening and Y is an auxiliary variable related to the isotropic. 

 are material constants. E is the Young modulus,  is the yielding stress for a virgin 

material, a and b are parameters that characterize the kinematic hardening and  are parameters 

that characterize the isotropic hardening. These equations will not be discussed in detail in the 

present paper because a detailed analysis can be found in Lemaitre and Chaboche, 1990. Simple 

numerical techniques for solving these equations with prescribed stress or strain histories can be 

found in Nina, 1992. 
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3.  Analysis of stress concentration in inelastic plates 

 

The goal of this paper is to present a simplified methodology to estimate the redistribution of 

stress caused by plastic flow at the root of the notch of a thin metallic plates undergoing a non 

monotonic tensile loading. Due to the one-dimensional  state of stress at the root of the notch,  it is 

possible to approximate the local stress and plastic strain histories from the solution of the elastic 

problem using a projection technique. The condition of validity of the method is that the plastic 

zone must remain sufficiently contained (surrounded by an elastic zone). 

Generally, the non-zero stress component  at the root of the notch calculated on the basis of 

elasticity theory is easily obtained using the so-called elastic geometric stress-concentration factor 

K

Eσ

T, that can be found in tables: 
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σFσ =K σ =K           ε =
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 (11) 

where  is the “nominal stress” (the external tensile resultant force F divided by a given 

“nominal” area A

Nσ

N) and  is the elastic strain component. related to . Eε Eσ

In this case, the study of the stress and plastic strain at the root of the notch can be reduced to 

the integration of the set of constitutive equations (5)-(10) considering a prescribed strain history. In 

order to understand how such simplification can be done, it is necessary to define a projection 

technique. There are basically two kinds of projections that can be used to approximate the stress 

and strain components at the root of the notch from  and : the Linear Rule and the Neuber 

Rule. Those rules are often used in simple problems and a detailed discussion about then can be 

found in Fuchs H. O. and Stephens R. I., 1980. We strongly suggest the use of such approximated 

method only if the strain at the root of the notch is smaller than 0.01 (1%). It is important to remark 

that, at this strain level, plastic oligocyclic fatigue phenomena may occurs if the loading is non-

Eσ Eε



 
 

monotonic. For a value of strain between  0.01 and 0.05 (1% to 5%) it is possible to use the theory 

but expression  (11) may be inaccurate due to the large displacements. For bigger values of the 

strain, a non-linear theory that accounts for large deformations should be used. 

 

4. Analysis of stress concentration in inelastic plates using Linear rule 

 

The linear projection technique assumes that the strain component at the root of the notch is 

always equal to , regardless the material behavior, hence 

11ε

Eε
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If the resultant external tensile force F(t) applied on the plate is known for all time instant t, it is 

possible to study the inelastic problem at the notch solving equations (5)-(10) with a prescribed 

strain history  given by 11ε (t) (12). Figure 2 shows schematically the main ideas of the linear 

projection technique for a monotonic loading  and figure 3 shows the main ideas of the linear 

projection technique for a non-monotonic loading 

 

 

Figure 2: Linear projection technique for a monotonic loading. 

 



 
 

 

Figure 3: Linear projection technique for a non-monotonic loading. 

 

5. Analysis of stress concentration in inelastic plates using Neuber rule 

 

For a monotonic loading, the Neuber projection technique assumes that the product of the stress 

and strain components  ( ) at the root of the notch is independent of the plastic flow, hence 11σ 11ε
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The above equation has two roots that, for a fixed t, gives the intersection of the hyperbola 

defined in (13) with the line defined by ( )p
11 11 11σ (t)=E (t)- (t)ε ε . Since the hyperbola has two branches, 

the adequate root must be chosen considering the sign of the force F(t) 
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If the resultant external tensile force F(t) applied on the plate is known for all time instant t, it is 

possible to study the inelastic problem at the notch  by solving equations (5)-(10) with a strain 

history  given by 11ε (t) (14). Figure 4 shows schematically the main ideas of the linear projection 

technique for a monotonic loading. The approximate local inelastic solution is given by the 

intersection of the experimental curve with the hyperbola corresponding to the elastic solution 

. ( )E Eσ ,ε

 

Figure 4:  Neuber projection technique for a monotonic loading. 

 

For cyclic loading, the method can be generalized branch by branch. Since the unloading is elastic, 

the same construction is repeated from the last loading point by using a change of axis (see figure 5) 
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Figure 5: Neuber projection technique for a non-monotonic loading. 

 

6. Comparison with finite element simulation 

 

The goal of this section is to compare the approximate local inelastic solution with finite 

element simulations. It is considered a flat bar with transverse hole in axial tension as shown in 

figure 6  with d=20mm, w=100mm, h =5 mm. In this case the elastic stress concentration factor Kt 

is equal to 2.5. To make the analysis simpler, only elasto-plastic behavior with linear kinematic 

hardening is considered (b=v2=v1=0). The other material parameters are E = 70000 MPa, a=26600 

MPa. A Poisson’s ratio ν = 0.3 is considered.  The results using the projection techniques were 

obtained using the program CICLO-plast.  

 

 

Figure 6: Flat bar with transverse hole in axial tension. 

 



 
 

A two-dimensional four-nodes isoparametric element was used in the finite element simulations.  

The mesh was successively refined in order to give an error smaller than 0.5% in the elastic stress 

concentration factor KT. In the analysis, the FEM prevision is considered closer to the real solution 

of the problem.  

Figures 7 to 12 show the stress-strain curves for  nominal stress σN  ranging from zero to a 

maximum value max σN  (max σN = 120 MPa in figure 7, max σN = 140 MPa in figure 8, max σN = 

150 MPa in figure 9, max σN = 175 MPa in figure 10, max σN = 185.5 MPa in figure 11, max σN = 

225 MPa in figure 12). The maximum plastic strain computed using Neuber rule are always bigger 

than the obtained by FEM simulations (in this sense it can be said that the Neuber rule is always 

conservative). The simulations using the linear rule are not always conservative, depending on the 

magnitude of the plastic strain. When the maximum plastic stress computed by FEM is smaller than 

0.01 (0.1%), both projection techniques are conservative as it can be seen in figure 7, but the linear 

rule gives better approximations. The FEM simulations and the simulations using the are very close 

if the maximum plastic strain is around 0.01 (0.1%) as shown in figure 8. The maximum plastic 

strain computed using linear rule is smaller than the obtained by FEM if the strain obtained by FEM 

is bigger than 0.01 (0.1%) as it can be seen in figures 9 to 12. Nevertheless, the maximum plastic 

strain obtained from the linear rule is closer the obtained by FEM than the obtained from Neuber 

rule if the maximum plastic strain is smaller than 0.005 (0.5%).  Finally, It is important to remark 

that the residual compressive stress and the associated plastic strain after unloading obtained from 

Neuber rule are always closer to the FEM predictions than the obtained from linear rule.. 

  

 

 

 

 

 



 
 

 

 

 

 

Figure 7: Stress-strain curve at the root of the notch for σN  ranging from zero to 120MPa. 

 

 

Figure 8: Stress-strain curve at the root of the notch for σN  ranging from zero to 140MPa.  

 

 

 

 

 



 
 

 

Figure 9: Stress-strain curve at the root of the notch for σN  ranging from zero to 150MPa. 

 

 

 

Figure 10: Stress-strain curve at the root of the notch for σN  ranging from zero to 175 MPa. 

 

 

Figure 11: Stress-strain curve at the root of the notch for σN  ranging from zero to 187.5MPa. 



 
 

 

 

 

Figure 12: Stress-strain curve at the root of the notch for σN  ranging from zero to 225 MPa. 

 

Figure 13 shows the stress-strain curve at the root of the notch for a fully reversed cycle of the 

normal stress σN with amplitude equal to 225 MPa. Buckling was not considered in the simulation. 

 

 

Figure 13 : Stress-strain curve at the root of the notch for a fully reversed cycle of the normal stress 

σN with amplitude 225 MPa. 

 

 

 

 



 
 

7. Final remarks 

 

The methodology proposed on this paper provides a simple but adequate tool for the stress 

concentration analysis in thin elasto-plastic plates under tension. The use of projection techniques 

allows to reduce the stress concentration analysis to the simulation of a one-dimensional problem of 

elasto-plasticity with prescribed strain history.  The linear projection technique always gives a 

lower bound of the maximum plastic strain at the root of the notch while Neuber rule allows to 

obtain an upper bound . It is important to remark that the simulation of a large number of cycles 

using the algorithms proposed on this paper takes few seconds (eventually much less than one 

second) while an accurate simulation using finite element can take a few hours in a PC. Finite 

element simulation should only be used if global information about the stress and plastic strain 

fields on plate must be obtained. 

Such a methodology can be extended easily to account for elasto-viscoplastic behavior (Martns, 

2001). In this case it is only necessary to replace equation  (10) by  

N
VISCOPLASTICITY p = ;      p(t=0)=0

K
Φ

⇒ &  

where <x> = max{0,x}. It can also be extended to study the stress concentration in inelastic bars 

and shafts under flexion (Rodrigues, 2003) 

Programs (CICLO-Plast, CICLO-Visc) to automatically compute the stress-strain curve at the 

root of the notch for elasto-plastic and elasto-viscoplastic plates using that methodology for 

different kinds of notches and complex loading histories can be free-downloaded in 

http://www.lmta.mec.uff.br. Also a program (COEFS-ciclo) to automatically identify the material 

parameters from one single cyclic test can be downloaded at this site. 

 

 

 

 

http://www.lmta.mec.uff.br/
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