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Abstract 

A hybrid global-local methodology to predict fatigue crack path and propagation life in 2D 

structures is extended to model crack retardation effects induced by variable-amplitude (VA) load-

ing histories. First, finite element (FE) models are used at each propagation step to calculate the 

generally curved fatigue crack path. However, the FE approach alone is not computationally effi-

cient to predict crack growth rate, because it would require time-consuming remeshing of the entire 

structure after each event in VA loading. Therefore, the crack path and their mixed-mode stress in-

tensity factors are FE calculated under constant-amplitude (CA) loading using fixed crack incre-

ments, requiring only relatively few remeshing steps. An analytical expression is then fitted to the 

calculated KI values, which is used in a powerful general purpose local-approach fatigue design 

program to predict crack propagation lives under VA loading, considering load interaction effects 

such as crack retardation or arrest after overloads. This methodology is experimentally validated by 

fatigue crack growth tests on compact tension C(T) specimens, modified with holes positioned to 

attract or to deflect the fatigue cracks. Experiments under VA loading are also performed on C(T) 

specimens without holes. Several crack retardation models are calibrated based on straight-crack 

data. These models are then used to successfully predict the curved crack growth behavior under 

VA loading of the hole-modified specimens. 

Introduction 

Fatigue life prediction of cracked two-dimensional (2D) structural components requires the 

calculation of the generally curved crack path, the associated stress intensity factors (SIF) KI and 

KII, and the crack propagation rate at each load step [1]. A finite element (FE) global discretization 

of the component, using specialized crack tip elements to predict the crack path and to calculate its 
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associated SIF, is a standard practice. However, this global calculation method is not computation-

ally efficient under variable amplitude (VA) loading to predict fatigue lives, because it requires 

time-consuming remeshing procedures and FE recalculations after each loading event. 

On the other hand, the so-called local approach, based on the direct integration of a crack 

propagation rule such as da/dN = F(ΔK, R, ...), can be efficiently used to calculate the crack incre-

ment at each load cycle, considering crack retardation effects if necessary (da/dN is the crack 

growth rate, ΔK the SIF range and R = Kmin/Kmax). However, this approach requires the SIF ex-

pression for the cracked geometry, which simply is not available for most real components. 

Since the advantages of these two approaches are complementary, the problem can be divided 

into two steps. First, the curved fatigue crack path and its SIF are calculated under constant ampli-

tude (CA) loading in a specialized FE program, using small crack increments and automatic 

remeshing. Numerical methods are used to calculate the crack propagation path, based on the com-

putation of the crack incremental direction, and the associated SIF KI(a) and KII(a), where a is the 

length along the crack path. The KI(a) values are then used as an input to a fatigue program based 

on the local approach, where the actual VA loading is efficiently treated by the integration of the 

crack propagation equation, considering overload-induced retardation effects if required [1]. 

In this work, fatigue crack growth experiments under VA loading are performed on compact 

tension C(T) specimens made of cold-rolled SAE 1020 steel, modified with holes positioned to at-

tract or to deflect the fatigue cracks. The curved crack paths are FE-predicted under CA loading, re-

sulting in good estimates of the measured paths under VA loading. The results suggest that over-

loads do not deviate significantly the crack path predicted under constant amplitude loading, pro-

vided that the overload does not induce crack bifurcation or plastic zones with sizes comparable to 

the residual ligament. Experiments under VA loading are also performed on C(T) specimens with-

out holes. Several crack retardation models are calibrated based on straight-crack data. These mod-

els are then used to successfully predict the curved crack growth behavior under VA loading of the 

hole-modified specimens. 



Mixed-Mode Crack Growth Calculations 

In FE mixed-mode crack growth calculations, three methods are generally used to compute the 

stress intensity factors along the (generally curved) crack path: the displacement correlation tech-

nique [2], the potential energy release rate computed by means of a modified crack-closure integral 

technique [3-4], and the J-integral computed by means of the equivalent domain integral (EDI) to-

gether with a mode decomposition scheme [5-6]. The EDI method replaces the J-integral along a 

contour by another one over a finite size domain, using the divergence theorem, which is more con-

venient for FE analysis. 

  Since Bittencourt et al. [7] showed that for sufficiently refined FE meshes all three methods 

predict essentially the same results, only the EDI method is considered in the calculations presented 

here. However, the other two methods also provide good results even for relatively coarse meshes. 

The calculated Modes I and II SIF KI and KII are then used to obtain an equivalent SIF Keq. 

The fatigue crack growth rate can then be computed from the equivalent stress intensity range ΔKeq 

by a simple McEvily-type model [8]: 

meq thda A ( K K )dN = ⋅ Δ − Δ  (1)

where ΔKth is the threshold SIF and A and m are the conventional tensile crack growth rate pa-

rameters for the given material. An alternative Elber-type equation can be used based on the maxi-

mum equivalent stress intensity Keq and on the crack opening value Kop, namely 

meq opda A (K K )dN = ⋅ −  (2)

Several models have been proposed to obtain Keq from KI and KII (and KIII, when it is impor-

tant). E.g., Tanaka [9] obtained an equivalent stress intensity model based on the displacements be-

hind the crack tip reaching a critical value, leading to 
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where ν is Poisson’s coefficient.  



Another expression for Keq can be derived for elastic loading under plane stress conditions, 

based on the relations between the potential energy release rate G and the SIF [10], leading to 

2 2 2eq I II IIK K K (1 ) K= + + + ν ⋅ I  (4)

Hussain et al. [11] used complex variable mapping functions to obtain G at a direction θ with 

respect to the crack propagation plane under Mode I and II combined loading. They assumed that 

crack extension occurs in a direction θ = θ0 that maximizes G, leading to the Maximum Fracturing 

Energy Release Rate (Gmax) criterion. Thus, an equivalent SIF is obtained at θ = θ0 that maximizes  
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The computed θ0 values at each calculation step are used to obtain the crack incremental 

growth direction - and thus the fatigue crack path - in the linear-elastic regime. 

Sih [12] proposed the Minimum Strain Energy Density Smin criterion, assuming that the crack 

propagates in a direction θ = θ0’ that minimizes the strain energy S around the crack tip. The asso-

ciated equivalent SIF is then calculated at θ = θ0’ that minimizes the expression 
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Erdogan and Sih [13] proposed the Maximum Circumferential Stress (σθmax) criterion, which 

considers that crack growth should occur in the direction that maximizes the circumferential stress 

in the region close to the crack tip. They considered the stresses at the crack tip under combined 

Mode I and II loading, given by summing up the stress fields generated by each mode: 
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where σr is the radial, σθ is the tangential, and τrθ is the shear stress components. These expressions 

are valid both for plane stress and plane strain. The σθmax criterion assumes that crack growth be-

gins on a plane perpendicular to the direction in which σθ is maximum. The maximum value of σθ 

is obtained when ∂σθ/∂θ is zero, or when (which is equivalent) τrθ = 0. This equation has a trivial 

solution θ = ±π (for cos(θ /2) = 0), and a non-trivial solution θ = θ0” given by 
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where the sign of θ0” is the opposite of the sign of KII. According to the σθmax criterion, the equiva-

lent SIF is calculated at the value θ = θ0”, which maximizes the expression 

( ) ( )eq I II1 3 3 3K 3cos cos K sin sin K4 2 2 4 2 2
θ θ θ θ= + ⋅ − + ⋅  (11)

Several similar criteria have been proposed, e.g. by Nuismer, by Amestoy et al., by Richard, by 

Schöllmann et al., and by Pook, as comprehensively reviewed in [14]. A few of these criteria even 

predict the warping angle of a 3-D crack subject to Mode III loading. These models have notable 

differences if the amount of Mode II loading is significant. For instance, under pure Mode II load-

ing, the propagation angle θ is ±70.5o, ±75o and ±82o according to the σθmax, Gmax and Smin models, 

leading to Keq values of approximately 1.15⋅KII, 1.60⋅KII and 1.05⋅KII (assuming ν = 0.3), respec-

tively, while Tanaka predicts Keq = 1.68⋅KII, and the G-based Equation (4) Keq = KII. The values of 

θ and Keq obtained from each model are plotted in Figs. 1 and 2 as a function of the KII/KI ratio. 

The differences among the studied models might be significant for mixed-mode fracture pre-

dictions, however they turn out to be negligible for fatigue crack propagation calculations. In fact, 

since all above models predict crack path deviation (θ ≠ 0) under any KII different than zero (see 

Fig. 2), they all imply that fatigue cracks will always attempt to propagate in pure Mode I, minimiz-

ing the amount of Mode II loading, curving their paths if necessary to avoid rubbing their faces. As 

soon as the crack path is curved to follow pure Mode I, all models agree that Keq is equal to KI. 

Therefore, not only the crack path but also the associated SIF values calculated by any of the above 



criteria are essentially the same. This has been verified by Bittencourt et al. [7], who concluded 

from FE simulations that these criteria provide basically the same numerical results. Since the 

Maximum Circumferential Stress criterion is the simplest, even presenting a closed form solution, it 

is the one adopted in the present work. 

 
Figure 1: Crack propagation direction θ as a function of the KII/KI ratio according to the σθmax, 

Gmax and Smin criterea. 

 
Figure 2: Equivalent SIF Keq as a function of the KII/KI ratio according to several models. 



Numerical Procedure 

Two complementary pieces of software, named Quebra and ViDa [1, 15, 16], have been 

developed to implement the two steps of this hybrid methodology.  

Quebra is an interactive graphical program for simulating two-dimensional fracture processes 

based on a FE self-adaptive mesh-generation strategy [15, 17]. This program includes all methods 

described above to compute the crack increment direction and the associated stress-intensity factors 

along the crack path. Moreover, its adaptive FE analyses are coupled with modern and very effi-

cient automatic remeshing schemes, which substantially decrease the computational effort. The 

automatic calculation procedure in Quebra is performed in 4 steps: (i) the FE model of the cracked 

structure is solved to obtain KI and KII and to calculate the corresponding crack propagation direc-

tion; (ii) the crack is increased in the growth direction by a (small) required step; (iii) the model is 

remeshed to account for the new crack size; and (iv) the process is iterated until rupture or until a 

specified crack size is reached. As a result, a list of KI and KII values is generated at short but dis-

crete intervals along the predicted crack paths. 

The second program, named ViDa, is a general-purpose fatigue design program developed 

to predict both initiation and propagation fatigue lives under VA loading by all classical design 

methods, including the SN, the IIW (for welded structures) and the εN for crack initiation, and the 

da/dN for crack propagation. It includes several load interaction models to predict overload and un-

derload-induced crack retardation and acceleration. The program includes comprehensive database 

with mechanical properties of more than 13000 materials, hundreds of editable KI and KII SIF ex-

pressions and da/dN curves to be used in the calculations. In particular, ViDa accepts any crack 

growth equation and any SIF expression, making it an ideal companion to Quebra, which can be 

used to generate the required ΔK expression if not available in its database. 

Experimental Results 

The FCG experiments were performed on C(T) specimens of cold-rolled AISI 1020 steel with 

yield strength SY = 285MPa, ultimate strength SU = 491MPa, Young modulus E = 205GPa, and 



reduction in area RA = 54%, measured according to the ASTM E 8M-99 standard, and with the 

analyzed weight percent composition: 0.19C, 0.46Mn, 0.14Si, 0.11Cu, 0.052Ni, 0.045Cr, 0.007Mo, 

0.002Nb, 0.002Ti, Fe balance. The tests were performed at two R = Kmin/Kmax ratios, R = 0.1 and 

R = 0.7, in a 250kN computer-controlled servo-hydraulic testing machine. The crack length was 

measured following ASTM E 647-99 procedures. The measured growth rates on 16 standard com-

pact tension C(T) test specimens were fitted by a modified McEvily da/dN equation (in m/cycle), as 

shown in Figure 3, where the propagation threshold under R = 0 is ΔK0 = 11.5 MPa√m, and the 

fracture toughness is KC = 280 MPa√m. 

 
Figure 3: Modified McEvily da/dN equation fitted to the SAE 1020 steel data. 

Three modified C(T) specimens were designed and tested, with width w = 29.5mm and thick-

ness t = 8mm. Each one had a 7mm-diameter hole positioned at a slightly different horizontal dis-

tance A and vertical distance B from the notch root, as shown in Figure 4(a). Two very different 

crack growth behaviors had been predicted by the FE modeling of the C(T) specimens, depending 

on the hole position. The predictions indicated that the fatigue crack was always attracted by the 

hole, but it could either curve its path and grow toward the hole (“sink in the hole” behavior) or just 

be deflected by the hole and continue to propagate after missing it (“miss the hole” behavior). 



Using the Quebra program, the transition point between the “sink in the hole” and the “miss 

the hole” crack growth behaviors was identified. The three modified C(T) specimens were designed 

so that specimens named CT1(CA) and CT1(VA) had the hole just half a millimeter above the tran-

sition point, and a specimen named CT2(CA) had the hole half a millimeter below it. The chosen 

specimen geometries were machined, measured, and FE remodeled, to account for small deviations 

in the machining process (Figure 5). In this way, it could be assured that the numerical models used 

in the predictions reproduced the real geometry of the tested specimens. 

Figure 4: Measured dimensions of the hole-modified C(T) specimens (mm). 

Specimens CT1(CA) and CT2(CA) were tested under CA loading, under a quasi-constant 

stress-intensity range ΔKI ≈ 20MPa√m and load ratio R = 0.1. 

CT01 CT02

 
Figure 5: Automatically generated FE mesh of the CT1(CA) and CT2(CA) specimens. 

Two specimens were tested under VA loading: one standard C(T) specimen, and the holed 

CT1(VA). The VA load histories applied to the specimens are shown in Figure 6. 
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Figure 6: Applied load history (in kN) for standard C(T) and modified CT1(VA). 

Figure 7 shows the predicted and measured crack paths for the three modified specimens (in 

mm) under CA or VA loading, presenting a very good match. This suggests that the curved crack 

paths predicted under CA loading give good estimates of the measured paths under VA loading. 

Therefore, assuming that the Linear Elastic Fracture Mechanics (LEFM) conditions apply, the dis-

cussed two-step methodology can be generalized to the VA loading case. 
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Figure 7: Predicted and measured crack paths for the modified C(T) specimens (mm). 

The SIF values calculated under CA loading along the crack path using the Quebra program 

were exported to the ViDa software to predict fatigue life, considering load interaction effects.  



Figure 8 shows predicted and measured crack sizes for the modified C(T) specimens under CA 

loading. 
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Figure 8: Predicted and measured FCG for modified C(T) specimens under CA loading. 

Several crack retardation models were calibrated based on the standard C(T) data under VA 

loading, including the Constant Closure model [11] (where the crack opening load Kop was cali-

brated as 26% of the maximum overload SIF, Kol,max), a modified Wheeler model [18-19] (where 

the model’s exponent was estimated as 0.51), and Newman’s closure model [20] (generalized for 

the VA loading case, where the stress-state constraint factor was fitted as α = 1.07, suggesting 

dominant plane-stress FCG conditions). The fitted load interaction parameters were then used to 

predict in the ViDa program the crack growth behavior under VA loading of the hole-modified 

CT1(VA) specimen, see Fig. 9. The significant retardation effects of the CT1(VA) specimen were 

very well predicted using these three load interaction models. 

Finally, a larger modified C(T) specimen named CT2(VA) has been designed and tested under 

VA loading, with sizes shown in Figure 2(b). The applid VA load history is shown in Fig. 10. As 

seen in Fig. 11(a), in the beginning there is a good match between the predicted and measured crack 

paths. However, after an overload at about 750,000 load cycles in the history, there is a significant 

deviation in the crack path. After carefully examining the specimen surface, it was found that the 



crack tip had unexpectedly bifurcated due to the overload, see Fig. 11(b). Even though such crack 

bifurcations can be easily modeled using the Quebra program [21-22], it is very difficult to predict 

whether and when they are induced. In addition, this overload generated a very large plastic zone 

ahead of the bifurcated crack tip, with dimensions comparable to the length of the residual ligament 

between the crack and the hole, invalidating LEFM assumptions. Thus, elastic-plastic FE calcula-

tions considering bifurcation effects would be required to predict the crack path of this specimen. 
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Figure 9: Crack growth predictions (based on straight-crack calibrations) on a modified C(T) 

specimen under VA loading. 
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Figure 10: Applied load history for standard modified CT2(VA) specimens. 
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Figure 11:  Predicted and measured crack paths for the CT2(VA) specimens. 

Conclusion 

A two-phase methodology was presented to predict fatigue crack propagation in generic 2D 

structures. First, self-adaptive finite elements were used to calculate the fatigue crack path and the 

stress-intensity factors along the crack length KI(a) and KII(a), at each propagation step. The com-

puted KI(a) was then used to calculate the propagation fatigue life by the local approach, consider-

ing overload-induced crack retardation effects.  

Two complementary software have been developed to implement this methodology. The first is 

an interactive graphical program for simulating two-dimensional fracture processes based on a fi-

nite-element adaptive mesh-generation strategy. The second is a general-purpose fatigue design 

software developed to predict both initiation and propagation fatigue lives under variable loading by 

all classical design methods. Particularly, its crack propagation module accepts any stress-intensity 

factor expression, including the ones generated by the finite-element software.  

Experimental results validated the proposed methodology, in particular suggesting that over-

loads do not significantly deviate the crack path predicted under simple loading. Moreover, the de-

veloped software demonstrated that effective and economical predictions of crack propagation paths 

and fatigue lives can be obtained for arbitrary two-dimensional structural components under vari-

able amplitude loading, provided that they did not induce crack bifurcation or plastic zones with 

sizes comparable to the residual ligament. 
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