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Abstract: The scale effect in materials is a well known phenomenon, responsible for the  

variation of the properties of the materials when the size of the bodies in analysis  is 

changed   or when different strain velocities during the tests are applied. The scale effect 

analysis with different numerical models allows us to   have an important indication to 

measure their capacity to simulate the material behavior appropriately. The utilization of  

numerical models  based exclusively on the Continuum Mechanics principles shows 

important limitations to explain this behavior, because the material nature is not continuum.  

A more accurate explanation requires to consider that the material structure is defined by 

lengths, called characteristic lengths, that identify material behavior. In the same way it is 

possible to observe that materials have dynamic properties which can be reduced to   

constants that depend dimensionally only on  time, the so called characteristic strain 

velocities. 



The numerical models in the explicit or implicit algorithms use the concepts mentioned 

above, according the way material properties are defined. The  discrete element method 

(DEM) has the capacity of capturing these phenomena. In the present work, the results 

obtained with DEM and  some conclusions on the material characteristics length MCL and 

the material characteristics strains rate MCSR  that the model used are  shown.    

Keywords: Scale Effect, Strain velocity dependence, Fracture Mechanics, Numeric 
Simulation.  
  

1.  Introduction 
 
For structural design, the knowledge about material properties in the real structure 

dimensions and the applied strain rate level are of fundamental importance. Generally the 

real structure material properties are different from those in a simple test specimen because 

exists the interaction between the material properties and the following factors: (i) structure 

size, (ii) strain rate applied on it. The material properties interaction with the size structure 

(size effect) has been studied since the modern science beginning - the Leonardo and 

Galileo works are evidence of that. Presently the models created by Bazant and Chen 

(1997) and Carpinteri et al (1995) are examples of recent studies that have been generated 

in the size effect area.  

The present paper is organized in the following way. In section 2, a brief description 

about the discrete element method (DEM) proposed by Rocha (1989) is illustrated. In 

section 3 is shown the theoretical framework proposed by Morquio and Riera (2004) to 

represent the scale law. The determination of non-dimensional parameters and the material 

characteristics length MCL and the material characteristics strains rate MCSR is briefly 

explained in sections 4 and 5. In section 6 the scale law verification is made in terms of 



characteristic lengths and strains rate. Finally, in section 7 the discussion of the physical 

significance of characteristic parameters and obtained results is pointed out.  

 
2. The Discrete Element Method (DEM)  
 

The DEM essentially consists in representing  the continuum domain through regular 

array of truss bars as shown in Fig. 1a,b, where group-working bar rigidity is equivalent to 

the mechanical behavior of the continuum domain in analysis. The elemental constitutive 

law represents the material non-linear behavior. 

In Rocha (1989) an elemental bilinear constitutive law is proposed. This law captures 

the material behavior until the rupture and is based in the original idea presented by 

Hillerborg et al (1976). The constitutive law is given in terms of force and strain. 

In the Fig. 1(c), Pcr represents the maximum tensile transmitted bar force and εp  the 

associate strain with Pcr; EA is the cubic model bar rigidity and kr is the factor that is related 

to ductility (this parameter permits to calculate the strain where the bar stop transmitting 

tensile force, εr =  kr εp). The limit strain εr must permit that the area in Fig. 1(c) multiplied 

by the bar length Lele be equal the available fracture energy (Gf Af) in the bar, where Gf is 

the specific fracture energy, and Af is the fracture area that each bar represent. 
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Figura 1 a) Cubic Module . b) Prism formed with several cubic Modules,  

c) Uniaxial constitutive law, d) Charge and discharge scheme. 



As the material has a brittle behavior, the linear fracture mechanics can be applied. The 

toughness can be expressed in terms of the Irwin stress intensity factor (KIc) or in terms of 

the specific fracture energy (Gf), then it is possible to write       

IC tK aχ σ= ⋅ ⋅   and     2
IC

f
KG
E

=                                                                            (1) 

where χ is a parameter that depends on the problem geometry and a is the crack length. If 

the material behavior is linear up to rupture (σt = εp E), the critical strain is given by: 
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and Rf  is a fail factor. This factor permits to introduce information about the intrinsic form 

of material rupture. The motion equations for the spatial discretization can be written as:  

( ) ( )M u f t q t⋅ + =&&                                                                                                                (3) 

In the equation (3), M represents the diagonal mass matrix proportional to the density ρ, 

u is the nodal displacement vector, f(t) is the nodal internal force vector, f(t) depends on 

previous and present displacements, and q(t) is the nodal external applied force vector. As 

in elastic linear system, f(t)=Ku(t), where K is the rigidity matrix. In systems with viscous 

forces, . Considering the damping coefficient C proportional to the mass, 

C=MD

( )f t K u C u= ⋅ + ⋅ &

f,, with Df  a constant that depends on the material and on the structure system. The 

motion Eq. (3) can be integrated numerically in the time domain with a explicit scheme 

(central difference methods).  

It is important to point out that Pcr, εP, εr, Gf ,Rf,E, ρ, Df, are exclusively material 

properties while Af and Lele are exclusively related to the numerical model. Parameters EA 

and kr are function of both model and material. This method was successfully used in the 



modeling of concrete, soils and other composite materials such as is shown in Riera and 

Iturrioz (1995) . 

3. Characteristic Length and Strain Velocities  
 

The scale effect is generally studied for a determined structure response, that here is 

generically named with the letter Y. This response can be, for example, the material 

nominal strength, the maximum storage elastic energy before fracture, etc. By comparing 

the results obtained in different size structures with geometric similarities, the scale effect 

can be verified. 

Two structures (a e b) are considered geometrically similar when the quotients between 

dimensions (db / da = λ) are a constant, for any selected structural dimension. Obviously the 

obtained responses (Ya, Yb, ...) might be or not different for the different sizes of the 

structure. In the first case (Yb=Ya= ...= constant), does not exist a scale effect, and the 

structural response is independent of the structure size. In the other case (Yb ≠ Ya≠ ...), the 

response is function of the structure size and consequently does exist a scale effect. An 

example of this scale effect is the microstructure size of grains in metals. It is known that 

the reduction of the grain size increases the metal hardness.  

Consider that the response Y for a structure with a geometric dimension d is defined by a 

scale law function f as:  

( )λfYY a=                                                                                                                         (4)                               

where λ = d / da, and Ya is a response for the structure  that has the reference size da and f is 

an non-dimensional function that fulfill the condition f(1) = 1. If function f depends on the 

reference size da, it means that exists a material characteristic length (MCL). On the other 

hand, if function f is not dependent on da,, then does not exist a MCL. As stated by Bazant 



& Chen (1997), when does not exist a MCL, it is possible verify that f has the following 

form:  

( ) rf λ λ=                                                                                                                     (5)                                    

The expression (5) represents the most generic form for the scale law, if there isn’t  an 

MCL. In this equation r represents any real number. If we consider that exists two MCL 

(dc1 e dc2) the response Y of the structure with geometric dimension d can be expressed as 

),,( ημλfYY a=                                                                                                                  (6)                                 

where the non-dimensional parameters are: λ=d /da, μ= dc1/da and η= dc2/da. The function f 

must fulfill the condition: f(1, μ , η) = 1, for any μ and η. Therefore when exist two or more 

characteristic lengths (dc1, dc2, ...) the function f must be independent of the selected 

reference dimension da, and will only depend on its characteristic lengths. 

In a similar way, it is possible to define a material characteristic strain rate (MCSR) that 

arises when the structures responses due to loads with different strain rate applied are 

different. If a structure have two MCL and two MCSR the responses for two geometric 

dimensions Ya  and Y  are defined as: Ya =>  structural response with size da  and strain rate 

.

aε  ; Y => structural  response with  size d and strain rate 
.
ε . 

If we name dc1 and dc2 the MCLs and . .

1c and 2cε ε  the MCSRs, the non-dimensional 

parameters should be defined as:  

. . . . . .

1 2 1/ , / , / , / , / , /c ca a a a c ad d d d d d 2c aλ μ η θ ε ε π ε ε γ ε= = = = = = ε                                    (7) 

In this conditions, is possible to write:  

),,,,,( γπθημλfYY a=                                                                                                        (8)                        

      



4. The Scale Law 
 

In the present section, the methodology to identify the parameters of the scale law is 

shown. In all cases studied, the Poisson coefficient is maintained constant and in this 

manner the number of involved parameters is reduced. In the present analysis it will be 

considered that all input parameters are deterministic variables.   

The following magnitude nomenclature will be utilized : M: Mass magnitude, L: Length  

magnitude, T: Time magnitude. The dimensional analysis by DEM is shown. In this case 

the following input parameters are used: 

a)  E = Elasticity Modulus,[ML-1 T-2 ]  

b)  ρ = Density, [ML-3 ]    

c)  Gf = Especific Fracture Energy, [MT-2 ]    

d)  Rf = fail factor,  [L-1/2 ]    

f)  Df = damping factor, [T-1 ]    

The results Ya and Y correspond to two structures (composed with the same material and 

different sizes, but geometrically similar to each other, submitted to different strain rate). In 

addition to the material property parameters, the following variables will enter in the 

analysis: 

i)  da =the first structure size, [L]    

j)  d =  the second structure size, [L] 

k)  .

aε  = the applied strain rate to the first structure, [T-1 ] 

l) 
.
ε  = the applied strain rate to the second structure, [T-1] 



In the DEM analysis, the bar length (Lele) was maintained constant for all case 

simulated. Then Lele does not entry as an input parameter. Consequently it is possible to 

write:   

.
( , , , , , , )f f fY F E G R D dρ ε=     (a),                 

.
( , , , , , , )aa f f fY F E G R D daρ ε=     (b)                    (9)        

And the quotient of both responses will be: 

. .
*( , , , , , , , , )af f f a

a
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Y

ρ ε ε=                                                                                      (10) 

The quotient of Eq. (10) can be expressed in terms of products of the power of input 

parameters. It must be accomplish that:  

8. .
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9

ε ε = non-dimensional                                (11) 

and, consequently: 

a1 + a2 + a3 = 0  (for magnitude  M) 

a1 + 3a2 + a4/2 –a6 – a7 = 0 (for magnitude  L)                                                              (12) 

2a1 + 2a3 + a5 + a8 +a9 = 0  (for to magnitude T) 

Using the Eqs. (12) is possible eliminate a1, a7 and a9  and to obtain that:   
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Equation (10) can be then rewritten as: 

( , , , , , )
a

Y f
Y

λ μ η θ π γ=                                                                                                            (14) 

From nine variables illustrated in Eq. (10), five were material function (E,ρ,Gf,Rf,Df), two 

were structure dimensions function (d,da) and two were function of the applied strain rate 

(
.

aand
.

ε ε ). This input variables define the studied problem in DEM, are shown in table 1 



and were reduced to six non-dimensional parameters illustrated in table 2.  In this case four 

parameters define the material properties (μ,η,π,γ), one the structure dimensions (λ)  and 

one the applied strain rate (θ). The MCL and MCSR are shown in  table 3.                                               

 
Table 1. Input Data for DEM 

 
 Var1[ML-1T-2] Var2 [ML-3] Var3[MT-2] Var4    [L-1/2] Var5  [T-1] 

Input Data  E ρ Gf Rf       Df   
 

Table 2.  Non-dimensional parameters for DEM 
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Table 3.  Characteristic Parameter (MCL and MCSR) for DEM 

 
 dc1     [L] dc2  [L] 

.

1cε  [T-1] 
.

2cε  [T-1] 
Characteristic 
Parameter 

2

1
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 fG

E
 

2
f

ER
ρ

 Df

 

5. Verification Methodology  

Four simulations with responses Y1, Ya1, Y2 and Ya2, are considered in order to verify the 

algorithm. The following conditions are considered:  

a) The magnitudes that define the material properties are equal for the two first cases 

(1, a1) and for the last two cases (2, a2), although not necessarily equal between 

them. 

b) The quotients between the sizes d1/da1 and  d2/da2  are equal. 

c) The quotients between the strain rates  . .

1/ a1ε ε  and . .

2 2/ aε ε are equal.    

d) The non-dimensional parameter (including Poisson coefficient) of the two first cases 

(1, a1) are equal to the two last cases (2, a2). 

If the four conditions are fulfilled it is possible to say that: 



Y1 / Ya1 = Y2 / Ya2                                                                                                         (15) 

For DEM, Eq. (15) results: 

1
1 1 1 1 1 1

1

( , , , , , , )
a

Y f
Y

λ μ η θ π γ ν= =
2

2
2 2 2 2 2 2( , , , , , , )

a

Y f
Y

λ μ η θ π γ ν=                                                     (16) 

where 

 1 2 1 2 1 2 1 2 1 2 1, , , , , 2λ λ μ μ η η θ θ π π γ γ= = = = = =                                                                         (17) 

These verifications were done in terms of characteristic strengths, strains, and energy 

values presented in the simulated processes.  

A bar in simple tension was considered for the scale law verification. The aspect 

ratio of all models is equals to 5 and the loading was imposed in terms of prescribed 

displacement at the ends of the bar as presented in Fig.2. The bar had square section and a 

full 3D analysis was performed.  

In table 4 bar properties as well as the discretization (lc) are shown. In Tab. 5 the 

results in terms of ratio responses Y/Ya are shown, where σf is the yield stress, σr the peak 

stress, εr the corresponding strain and the εmax ultimate strain. Eelastic, Ekinematic, Edamage are 

the highest values of the elastic energy stored in the body, the  kinematic and damaged (or 

dissipated) energy values that occur during the simulations, respectively. In Figs. 3 and 4 

the four tests are plotted in terms of the parameters mentioned above.  Finally, the final 

configurations of the four tests are shown in Fig 5. 

 

 

 L 

L/5 

Figure 2: The tension bar tested by DEM. 



Table 4 - The geometrical and material properties used in the DEM simulation.                                         
 

 L 
(m) 

Dε/dt 
(mm) 

lc 
(m) 

E 
(N/m2) 

ρ 
(Kg/m3) 

Gf
(N/m) 

Rf
(m1/2) 

Df
(1/s) 

1 2 1 0.01 2.E11 1E+3 1E2 5 10 
1a 3 10 0.01 2.E11 1E+3 1E2 5 10 
2 0.5 100 2.5E-3 17500 6.4E4 1E6 10 1000 

2a 0.75 1000 2.5E-3 17500 6.4E4 1E6 10 1000 
 

In the Fig. 3 the stress versus strain curves for the four cases tested are shown. 
 
 

Table 5 - Results in terms of the ratio Y1/Y1a and Y2/Y2a 

 σf  
 

[N/m2] 

σr  
 

[N/m2] 
εmax  εr E elastic 

[Nm] 

Ekinematic 

[Nm] 

Edamage 

[Nm] 

 

0.0E+00

1.6E+07

3.2E+07

4.8E+07

6.4E+07

8.0E+07

9.6E+07

0.0E+00 7.0E-05 1.4E-04 2.1E-04ε

σ[Pa]

Y1a

Y1

 

0.0E+00

8.0E+11

1.6E+12

2.4E+12

3.2E+12

4.0E+12

0.0E+00 5.0E-05 1.0E-04 1.5E-04 2.0E-04
ε

σ[Pa]

Y2a

Y2

 
Figure 3: Results in terms of stress (σ  versus overall strain (ε.for the four test. Y1,Y1a) . 

Y1
Y1a

 4,15 4,26 5,81E-2 3,97E-2 0.60 1.52 0.32 

Y2
Y2a

 4,18 4,25 5,89E-2 4,19E-2 0.61 1.52 0.33 
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εr_1a
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σfa1 

σf1 
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Figure 4: Results in terms of Elastic, Kinetic and Damaged Energies dissipated during the 

process, for the four tests. 
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Figure 5 : The final configuration of the four body tests. (gray color indicated damaged 

region. The Y1 and  Y2 bodies broken in the end of the bar). 

 
 



6. Discussion and Conclusions  
 

In the present work the formulation carry out by Morquio and Riera (2004) was 

applied to formulate a scale law in terms of non-dimensional variables for the Discrete 

Element Method (DEM) . It can be concluded that: 

a) The verification done for DEM showed very good correlation as the section 5 indicates. 

b) From Eq.(15), knowing the responses for different scales for a material (1) 

(Y1a,Y1b,Y1c,Y1d,Y1e,.. )  it is possible to obtain the responses Y2b ,Y2c ,Y2d ,Y2e,… (for another 

material (2) that can be analyzed in the same model), only knowing a response for one size 

(Y2a). Hence, it is possible to write  

Y2i = (Y1i / Y1a)Y2a , ( i = b, c, d, e, ..)                                                                      (18) 

The dimensions of the specimen that produce the responses Y1a, Y1b, Y1c, Y1d, Y1e, must 

accomplish the relations below:  

 Y1i / Y1a = f (λ1ai ,μ1a ,η1a ,θ1ai ,π1a ,γ1a ) = Y2i / Y2a = f(λ2ai ,μ2a ,η2a ,θ2ai ,π2a ,γ2a )   (19) 

where  λ1ai =λ2ai ,μ1a =μ2a , η1a=η2a,θ1a =θ2a  ,π1a=π2a  and   γ1a = γ2a  (i = b, c, d,  ...) 

c) Trying to understand the physical meaning of characteristic parameters shown in table 3, 

the following relations are defined:   

2

, ,t IC
IC f t p

KK G E
Rf E
σ σ ε= = = ,                                                                            (20) 

Where KIc and  Gf  are the toughness in terms of  stress intensity factor and  specific 

fracture energy,  respectively.  It can be observed that:  

c1) Using Eq. (20), the length characteristic dc1, shown in Tab.3, can be expressed as: 

                 
1 2 2

1 f
c

p

G
d

Rf Eε
= =                                                                                        (21) 



Trying to find a physical meaning for dc1, the following transformation is done: 

( )
23

11
1 2 2 3

1

((1/ 2) ) ( )
((1/ 2) ) 2

f f f
c

p p p

G G G lld
E E l Uε ε ε

= = = 1l                                                                        (22) 

If we interpret l1 as the length of the side of a cube that, for its critical strain εp, 

stores an elastic strain energy U equal to the necessary energy to break an area ( l1 )2, then it 

is possible to rewrite dc1  in terms of l1 as:  

1

1
2 2

f
c

p

G ld
Eε

= =                                                                                                             (23) 

Consequently dc1 can be interpreted  as the   half of the  l1 .  

c2) The characteristic length dc2 in the table 3 can be eliminated if the critical strain 

εp is considered a non-dimensional parameter into the material analyzed scale law. In this 

way, the expression (16) can be replaced by 

1
1 1 1 1 1

1

( , , , , , , )p
a

Y f
Y

λ μ θ π γ ν ε= =
2

2
2 2 2 2 2( , , , , , , )p

a

Y f
Y

λ μ θ π γ ν ε=                                             (24)      

In Iturrioz et al 2005 a comparison between the results obtained from three different 

numerical methods was carried out. These different numerical methods allow to simulate 

fracture in solids. Two of these formulations are based on the Finite Element Method: the 

Cohesive Interface Method (Nedeelman 1987) and a Distributed Fissure Method proposed 

by Rots (1988). The third method is the Discrete Element Method analyzed in the present 

work. The characteristic length dc2=Gf/E appears in the three parameter sets of the scale 

laws of the models mentioned above.   

c3) Regarding the characteristic strain rates,  

.
2

1

1

1
c f

c

ER
d

ε E
ρ ρ

= =                                                                                                   (25) 



It is possible to define  
.

1cε  as the wave elastic propagation speed taking the characteristic 

length dc1 as  the length unit.   

 c4) Another characteristic strain rate (
.

2cε ) linked to the viscous damping proportional to 

the structure mass (Df). 

d) The method could be generalized for non deterministic input data. In this case, if one of 

the input datum is a random field, its statistical distribution (Normal or Weibull, for 

example) remains defined by the following parameters: the mean value and the standard 

deviation that could also be incorporated to the correlation length of the random field. 

When  the problem is non deterministic, it is possible to obtain the response Y in terms of 

mean value and standard deviation. In this case, instead of the value of the input  parameter 

used in the deterministic analysis, the mean value  will appear and another input datum the 

standard deviation will be incorporated. We could also consider the mean value and an non-

dimensional parameter:  the variation coefficient of the random input datum. The 

correlation length of the random field appears as a characteristic length.    

e) As a final conclusion it is possible to say that the scale law analysis permits to infer 

fundamental information about the meaning of the parameters used by the DEM  

method. The comparison among different methods gives a new light in the 

interpretation of these parameters. 
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