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Abstract. Aguiar (2004, 2006a) have considered a class of two-dimensional problems

in classical linear elasticity for which material overlapping occurs. Of course, mate-

rial overlapping is not physically realistic, and one possible way to prevent it uses a

constrained minimization theory. In this theory, a minimization problem consists of mini-

mizing the total potential energy of a linear elastic body subject to the constraint that the

deformation field be locally invertible. Aguiar (2004, 2006a) have used, respectively, an

interior and an exterior penalty formulation of the minimization problem together with a

standard finite element method to compute the minimizers. The formulation consists of

finding the displacement field that minimizes an augmented potential energy functional,

which is composed of the potential energy of linear elasticity theory and of a penalty

functional divided by a penalty parameter. In the interior penalty formulation, the penalty

functional becomes unbounded as we approach the boundary ofthe set of all kinemati-

cally admissible deformation fields from inside the set. A sequence of minimizers belong-

ing to this set and parameterized by the penalty parameter isthen constructed. As the

penalty parameter becomes unbounded, the sequence is shownto converge to the solution

of the original constrained minimization problem. In the exterior penalty formulation,

the penalty functional is bounded everywhere and is zero inside the set of kinematically

admissible fields. A sequence of minimizers, parameterizedby the penalty parameter, is

also constructed and is shown to converge to the solution of the original constrained min-

imization problem as the penalty parameter goes to zero. In this work, we compare both

formulations by solving a singular problem in plane elasticity. In particular, we determine

the convergence ratio in both cases and show numerical results which indicate that, for a

fixed finite element mesh, the sequence of numerical solutions obtained with the exterior

penalty formulation converges faster than the sequence of numerical solutions obtained

with the interior penalty formulation.

Keywords: Anisotropic elasticity, Singularity, Constrained optimization, Penalty method,

Finite Element Method.
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1. INTRODUCTION

There are problems in the classical linear theory of elasticity whose closed form

solutions, while satisfying the governing equations of equilibrium together with well-

posed boundary conditions, allow material overlapping to occur. Typically, problems of

this kind involve some sort of singularity, and strains exceeding level acceptable from the

point of view of a linear theory occur around the singular points.

Aguiar (2004, 2006a) have considered a two-dimensional problem in classical linear

elasticity for which material overlapping occurs. The problem, presented in Lekhnit-

skii (1968), concerns the equilibrium of a circular homogeneous disk, which is radially

compressed along its external contour by a uniformly distributed normal force. The re-

quirement that the displacement field be rotationally symmetric with respect to the center

of the disk allows the derivation of a closed form solution that predicts overlapping of

material in a certain region occupied by the linear elastic disk.

One possible way to prevent the anomalous behavior of self-intersection is proposed

by Fosdick and Royer (2001). It combines the linear theory with the imposition of local

injectivity constraint through a Lagrange multiplier technique. These authors investigate

the problem of minimizing the total potential energyE of classical linear elasticity on

an admissible setAε of vector-valued functionsv that satisfy the injectivity constraint

det(1 + ∇v) ≥ ε > 0 for a sufficiently smallε ∈ R. In particular, they show the

existence of a solution for the constrained minimization problem in two dimensions. The

constrained problem is, however, highly nonlinear and, in general, needs to be solved

numerically.

Obeidat et al. (2001) and Aguiar (2004, 2006a) present Finite Element approaches to

solve this class of constrained problems. In the Obeidat’s approach, a carefully designed

algorithm is required to keep track of all subdomains of the reference configuration where

the injectivity constraint is violated.

Our approach in Aguiar (2004) is based on aninterior penalty formulation, which

consists of replacingE by a penalized functionalEγ = E + Q/γ, whereγ is an arbi-

trary positive number andQ is a penalty functional defined on the constraint setAε. The

penalty functional is non-negative onAε, satisfiesQ[v] → ∞ asv approaches the bound-
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ary ofAε, and is designed so that minimizers ofEγ[·] lie in the interior of the constraint

setAε; hence the terminterior penalty method. Thus, the penalty formulation of the con-

strained problem consists of findinguγ ∈ Aε that minimizes the penalized functionalEγ

over the constraint setAε.

Another approach considered by Aguiar (2006a) is based on anexterior penalty for-

mulation, which consists of replacingE by a penalized functionalEδ = E + P/δ, where

δ is an arbitrary positive number andP is a penalty functional defined on the whole set

A. The penalty functional is non-negative onA and vanishes onAε. In general, the min-

imizers ofEδ[·] lie in the exterior of the constraint setAε; hence the termexterior penalty

method. Thus, the penalty formulation of the constrained problem consists of finding

uδ ∈ A that minimizes the penalized functionalEδ over the setA. This method has the

advantage of yielding an unconstrained minimization problem.

In Section 2. we apply both penalty formulations on the classof constrained min-

imization problems considered by Fosdick and Royer (2001).In Section 3. we review

some results presented by these authors concerning the compressed disk problem in the

context of both the unconstrained and the constrained theories. In Section 4. we use the

Finite Element Method to obtain discrete problems from the penalty formulations of the

constrained disk problem and discuss briefly a strategy presented by Aguiar (2006b) to

solve this class of problems. The resulting numerical scheme is simple to implement,

converges much faster than previous schemes presented by Aguiar (2004, 2006a), and

can be applied in the numerical solution of problems in any dimension. In Section 5. we

compare the numerical results obtained from the solutions of the discrete problems with

analytical results obtained from the closed form solution of the constrained minimization

problem considered in Section 3.. In Section 6. we present some concluding remarks.

2. The Penalty Functional Formulation

Let B ⊂ R2 be the undistorted natural reference configuration of a body. Points

x ∈ B are mapped to pointŝx = f(x) ≡ x + u(x) ∈ R2, whereu(x) is the displacement

of x. The boundary∂B of B is composed of two non-intersecting parts,∂1B and∂2B,

∂1B ∪ ∂2B = ∂B, ∂1B ∩ ∂2B = ∅, such thatu(x) = 0 for x ∈ ∂1B and such that a dead
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load traction field̄t(x) is prescribed forx ∈ ∂2B. In addition, a body forceb(x) per unit

volume ofB acts on pointsx ∈ B.

We consider the problem of minimum potential energy:

min
v∈Aε

E [v] , E [v] ≡ 1

2
a[v,v] − f [v] , (1)

where

a[v,v] ≡
∫

B

C[E] ·E dx , f [v] ≡
∫

B

b · v dx +

∫

∂2B

t̄ · vdx , (2)

andE ≡
[

∇v + (∇v)T
]

/2 is the infinitesimal strain tensor field. The functionalE [·] is

the total potential energy of classical linear theory of elasticity. Furthermore,

Aε ≡ {v : W 1,2 (B) → R
2
∣

∣det (1 + ∇v) ≥ ε > 0,v = 0 a.e. on∂1B} (3)

is the class of admissible displacement fields andC = C(x) is the elasticity tensor, as-

sumed to be positive definite and symmetric. We suppose thatε > 0 in (3) is sufficiently

small.

Fosdick and Royer (2001) fully characterize the solutions of the minimization prob-

lem (1)-(3). In particular, they show that there exists a solution to this problem which

does not violate the injectivity constraintdet (1 + ∇v) ≥ ε > 0 and derive first variation

conditions for a minimizeru ∈ Aε of E [·].
Let

A ≡ {v : W 1,2 (B) → R
2
∣

∣v = 0 a.e. on∂1B} . (4)

We then obtain the first variation ofE [·] at u in the form< DE [u],v >≡ a[u,v] −
f [v] , ∀v ∈ A , wherea[·, ·] andf [·] are defined in (2). On the other hand, it can be

shown that there exists a scalar Lagrange multiplier fieldλ : L2(B) → R such that the first

variation has the equivalent representation< DE [u],v >=
∫

B
λ cof ∇f ·∇v dx , ∀v ∈ A ,

wherecof ∇f is the cofactor of the deformation gradient and we recall from above that

f(x) = x + u(x).

Defining

B> ≡ int[{x ∈ B : det∇f > ε}] , B= ≡ int[{x ∈ B : det∇f = ε}] , (5)
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where int[·] denotes the interior of a set, the necessary first variation conditions for the

existence of a minimizer are given by

• The Euler-Lagrange equations

Div T+b = 0 in B> , Div(T−ελ(∇f)−T )+b = 0 , λ ≥ 0 , in B= , (6)

together with the boundary conditions

Tn = t̄ on∂B> ∩ ∂2B , (T − ελ(∇f)−T)n = t̄ on∂B= ∩ ∂2B , (7)

whereT is the stress tensor andn is a unit normal to∂2B.

• Jump conditions acrossΣ ≡ B̄> ∩ B̄=, which is assumed to be sufficiently smooth:

(T − ελ(∇f)−T )
∣

∣

Σ∩B̄=

n = T
∣

∣

Σ∩B̄>
n , (8)

wheren is a unit normal toΣ and whereΣ ∩ B̄= andΣ ∩ B̄> mean that the evalu-

ations are understood as limits to the dividing interfaceΣ from within B= andB>,

respectively.

An interior penalty functional formulationof the minimization problem (1)-(3) con-

sists of replacing the energy functional (1.b) by a penalized potential energy functional

Eγ : Aε → R̄, R̄ ≡ R ∪ {∞}, of the form

Eγ[u] = E [u] +
1

γ
Q[u] , (9)

whereγ > 0 is a penalty parameter andQ : Aε → R̄ is an interior penalty functional,

also calledbarrier functional. The penalty functional is designed so that minimizers of

Eγ[·] lie in the interior of the constraint setAε. Thus, the addition of(1/γ)Q has the

effect of establishing a barrier on the boundary of the constraint setAε that prevents a

search procedure for a minimizer from leaving the setAε. In this work, we consider the

inverse barrier functional, defined by

Q[v] =

∫

B

1

det(1 + ∇v) − ε
dx, ∀v ∈ Aε . (10)
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Observe from (10) thatQ is non-negative onAε and satisfiesQ[v] → ∞ asv approaches

the boundary ofAε.

The penalty formulation of the minimization problem (1)-(3) consists of finding an

admissible displacement fielduγ ∈ Aε that minimizes the penalized potentialEγ[·], i.e.,

min
v∈Aε

Eγ[v] , (11)

whereEγ[v] is given by the expressions (9), (1.b), (2), and (10). This isa constrained

problem, and indeed the functional to be minimized is somewhat more complicated than

the original energy functional (1.b). The advantage of considering this problem, however,

is that we can use numerical procedures commonly employed inthe numerical approxi-

mation of solutions of unconstrained problems. Thus, although the minimization problem

(11) is a constrained problem from the theoretical point of view, from a computational

point of view, it is unconstrained.

On the other hand, anexterior penalty functional formulationof the minimization

problem (1)-(3) consists of replacing the energy functional (1.b) by a penalized potential

energy functionalEδ : A → R of the form

Eδ[u] = E [u] +
1

δ
P[u] , (12)

whereδ > 0 is a penalty parameter andP : A → R is a penalty functional, which is

non-negative inA and is designed so thatP[v] increases with the distance fromv to the

constraint setAε. In this work, we consider

P[v] =
1

2

∫

B

[max(0,−p(v))]2 dx , ∀v ∈ A , (13)

where max(0,−p) ≡ (−p + | p |)/2 and

p(v) = det(1 + ∇v) − ε . (14)

Clearly,P[v] = 0 if the injectivity constraint is satisfied; otherwise,P[v] > 0. In Section

4. we see that the choice (13) forP leads to a discrete version of the penalized energy

functionalEδ that is continuous and differentiable everywhere.
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We then want to find an admissible displacement fielduδ ∈ A that minimizes the

penalized potentialEδ[·], i.e.,

min
v∈A

Eδ[v] , (15)

whereEδ[v] is given by the expressions (12), (1.b), (2), (13), and (14).This is an uncon-

strained problem, which also has the advantage of yielding discrete minimization prob-

lems that can be solved by classical unconstrained optimization techniques.

In Section 4. we use both penalty formulations presented above to construct a numer-

ical scheme that is used in Section 5. for the solution of the constrained plane problem

presented in Section 3.2.

3. The Disk Problem

In this section we review the main results obtained from the solution of a plane prob-

lem, which will serve as a model problem in our computations,in the context of both the

classical linear theory, Section 3.1, and the constrained minimization theory, Section 3.2.

3.1 The Unconstrained Disk Problem

In classical linear elasticity, the disk problem concerns the equilibrium of a circular

homogeneous disk of radiusρe, which is radially compressed along its external contour by

a uniformly distributed normal forcep per unit length. Relative to the usual orthonormal

cylindrical basis(eρ, eθ), the stress and strain tensors are given by

T = σρ ρ eρ ⊗ eρ + σθ θ eθ ⊗ eθ + σρ θ (eρ ⊗ eθ + eθ ⊗ eρ) ,

(16)

E = ǫρ ρ eρ ⊗ eρ + ǫθ θ eθ ⊗ eθ + ǫρ θ (eρ ⊗ eθ + eθ ⊗ eρ) ,

respectively. These tensors are related to each other by thelinear constitutive relations

σρ ρ =
1

1 − νρνθ

(Eρ ǫρρ + νρ Eθ ǫθθ) ,

(17)

σθ θ =
1

1 − νρνθ

(νθ Eρ ǫρρ + Eθ ǫθθ) , σρ θ = 2 G ǫρθ ,
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whereEρ, Eθ, νρ, νθ, andG are elastic constants that satisfy the inequalities

νρ

Eρ

=
νθ

Eθ

, Eρ > 0 , Eθ > 0 , G > 0, (1 − νρ νθ) > 0 . (18)

Since uniqueness is guaranteed in classical linear elasticity, the displacement field

must be rotationally symmetric with respect to the center ofthe disk, i.e.,u(ρ, θ) =

u(ρ) eρ. Thus, the strain components take the form

ǫρρ = u′ , ǫθθ =
u

ρ
, ǫρθ = 0 , (19)

where(·)′ ≡ d (·)/d ρ. Also, there is only one non-trivial equilibrium equation,which

is given by∂σρρ/∂ρ + (σρρ − σθθ) /ρ = 0 . Because of (16)-(19), this equation becomes

Eρ

(

u′′ + u′

ρ

)

− Eθ
u
ρ2 = 0 .

Imposing the natural compatibility conditionu(0) = 0 and the boundary condition

σρρ(ρe) = −p, we obtain theclassical solutionpresented in Lekhnitskii (1968),

u(ρ) = −q
ρk

ρk−1
e

, q ≡ p (1 − νρ νθ)
√

Eρ Eθ + νρ Eθ

, κ ≡
√

Eθ

Eρ

> 0 . (20)

As remarked by Lekhnitskii, a consequence of both (20.a,c) is that the radial and

tangential stresses become singular for anyp > 0 whenκ < 1, since

σρρ = −p

(

ρ

ρe

)k−1

, σθθ = −p κ

(

ρ

ρe

)k−1

. (21)

Another interesting feature of the solution (20.a,c), noted by Fosdick and Royer

(2001), is that for anyp > 0 there is a core region defined by

0 <

(

ρ

ρe

)1−κ

< q (22)

for whichu(ρ) < −ρ. Since the deformation of the body is given byf(x) = [ρ + u(ρ)] eρ

for each particlex = (ρ, θ) of the disk, we readily see that material penetrates itself in

this central core.

This core contains an annular region, defined byκ q <
(

ρ

ρe

)1−κ

< q , where the

determinant of the deformation gradient, given by

det∇f =

[

1 − κ q

(

ρ

ρe

)κ−1
][

1 − q

(

ρ

ρe

)κ−1
]

, (23)
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is negative. Outside the annular region, i.e., for small andlarge values of(ρ/ρe)
1−κ, we

see from (23) thatdet∇f is positive.

Thus, for0 < κ < 1, the classical solution has no physical meaning and therefore

should be rejected as a viable solution. The anomalous behavior of material overlapping

provides, however, motivation to use a pseudo-linear theory which respects the constraint

that admissible deformations be at least locally invertible, i.e., thatdet∇f > 0.

3.2 The Constrained Lekhnitskii Problem

Fosdick and Royer (2001) consider the solution of the rotationally symmetric disk

problem of Lekhnitskii outlined in Section 3.1 for the material parameterκ ∈ (0, 1) of

(20.c) within the constrained minimization theory outlined in Section 2..

The setsB= andB> of (5), where the constraint of local injectivity is active (det∇f =

ε) and non-active (det∇f > ε), respectively, can be determined explicitly as

B= = {x = ρ eρ ∈ B : 0 ≤ ρ < ρa}] , B> = {x = ρ eρ ∈ B : ρa < ρ < ρe} , (24)

for someρa ∈ [0, ρe], which is the solution of the algebraic equation

0 =

(

1 + κ

1 − νρ νθ

)

(Eρ κ + νρ Eθ)

(

ρe

ρa

)κ−1

+

(25)
(

1 − κ

1 − νρ νθ

)

(Eρ κ − νρ Eθ)

(

ρe

ρa

)κ−1

+
2 κ p√
ε − 1

,

with κ defined by (20.c).

The equations (6)-(8) can be solved in closed form, yieldingthe Lagrange multiplier

constraint stress fieldλ(ρ) = −
(

1−√
ε√

ε

)(

Eρ−Eθ

1−νρ νθ

)

log
(

ρ

ρa

)

in B= . Note thatλ has

a logarithmic singularity at the origin, which is weaker than the stress singularity of the

unconstrained problem reported in (21).

Also, the displacement fieldu = u(ρ) eρ is given by

u(ρ) =



















− (1 −√
ε) ρ in B= ,

(

1+κ
2 κ

)

(
√

ε − 1) ρ−κ+1
a ρκ +

(−1+κ
2 κ

)

(
√

ε − 1) ρκ+1
a ρ−κ in B> .

(26)
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Using (26) together withf(ρ) = [ρ + u(ρ)] eρ, we can easily obtain the expression

det∇f(ρ) =



















































ε in B= ,

{

1 +
√

ε−1

2 κ

[

(κ + 1)
(

ρ

ρa

)κ−1

+ (κ − 1)
(

ρ

ρa

)−κ−1
]}

∗

{

1 +
√

ε−1

2

[

(κ + 1)
(

ρ

ρa

)κ−1

− (κ − 1)
(

ρ

ρa

)−κ−1
]}

in B> .

(27)

The solution (26) describes the deformation of the disk which is, in fact, globally injective.

4. THE DISCRETE FORMULATION

We want to construct an approximate solution to both minimization problems (11)

and (15) for given penalty parametersγ andδ, respectively. For this, we consider a Finite

Element formulation based on the introduction of discrete minimization problems over

a finite-dimensional spaceAh ⊂ A, where the subscripth stands for the characteristic

length of the finite element andA is given by (4). These problems can be solved using an

unconstrained minimization method with a line search technique.

Holding h fixed and increasingγ in the interior penalty formulation, we generate a

sequence of solutions parameterized byγ for the discrete problems that converges to an

approximate solutionuh of the minimization problem (1)-(3) asγ → ∞. We then refine

the Finite Element mesh by decreasingh and repeat the process above. In so doing, we

generate a sequence of solutionsuh parameterized byh which converges to the solution

u of the original minimization problem (1)-(3).

A similar procedure is used to generate a convergent sequence of solutionsuh for

the exterior penalty formulation. Here, however,uh is the limit function of a sequence of

solutions parameterized byδ asδ tends to zero.

The procedures outlined above are general an apply to problems in any dimension. In

this work, we consider the model problem of Lekhnitskii described in Section 3. with the

imposition of the injectivity constraintdet(1 + ∇v) ≥ ε > 0, wherev ∈ A. Although

the problem is two-dimensional, we recall from Section 3. that it is also rotationally sym-

metric, so thatv = v eρ, wherev is a scalar function defined on the interval(0, ρe).
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Since the energy potentialE [·] is given by (1.b) and (2), we can write

E [v eρ]=
π Eρ

1 − νρ νθ







ρe
∫

0

[

(v′)2 ρ +
(κ v)2

ρ

]

dρ + νρ [κ v(ρe)]
2







+ 2 π p v(ρe) ρe (28)

for the model problem of Lekhnitskii, whereκ is given by (20.c). Sincedet(1+∇(v eρ)) =

(1 + v′)(1 + v/ρ), the inverse barrier functional, defined by (10), becomes

Q[v eρ] = 2 π

ρe
∫

0

ρ

(1 + v′)(1 + v/ρ) − ε
dρ , (29)

and the exterior penalty functional, defined by (13) and (14), becomes

P[v eρ] =
π

4

ρe
∫

0

[−(1 + v′)(1 + v/ρ) + ε + |(1 + v′)(1 + v/ρ) − ε|]2 ρ dρ . (30)

The penalized potentialEγ[·] is then obtained from (9), (28), and (29), while the penalized

potentialEδ[·] is obtained from (12), (28), and (30).

Now, let0 = ρ0 < ρ1 < ρ2 < . . . < ρn = ρe be a partition of the intervalI ≡ (0, ρe)

in sub-intervalsIj = (ρj−1, ρj) of length∆ρj = ρj − ρj−1 , j = 1, 2, . . . , n . Let alsoAh

be the set of functionsv eρ such thatv is linear over each sub-intervalIj , v ∈ C0(I), and

v(0) = 0. Clearly,Ah ⊂ A, whereA is given by (4).

Next, introduce the piecewise linear basis functionsφj eρ ∈ Ah, j = 1, 2, . . . , n,

defined byφj(ρi) = δij , i, j = 1, 2, . . . , n . Then, a functionvh eρ ∈ Ah has the represen-

tation

vh(ρ) = s · g(ρ) , ρ ∈ I , (31)

which is the inner product between the vectors ≡ (η1, η2, . . . , ηn) ∈ Rn and the n-

dimensional vector-valued functiong ≡ (φ1, φ2, . . . , φn) defined over the intervalI. The

coefficientsηi are given by

ηi = vh(ρi) . (32)

Substitutingvh into (28)-(30), we obtain

Eh(s) ≡
E [(s · g) eρ]

2 π p ρe

=
Eρ

2 (1 − νρ νθ) p ρe

{ ρe
∫

0

[

(s · g′)2 ρ +
(κ s · g)2

ρ

]

dρ +

νρ [κ s · g(ρe)]
2

}

+ s · g(ρe) , (33)
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Qh(s) ≡
Q[(s · g) eρ]

2 π p ρe

=
1

p ρe

ρe
∫

0

ρ

[(1 + s · g′)(1 + s · g/ρ) − ε]
dρ , (34)

Ph(s) ≡
P[(s · g) eρ]

2 π p ρe

=
1

8 p ρe

ρe
∫

0

[

− (1 + s · g′)(1 + s · g/ρ) + ε +

|(1 + s · g′)(1 + s · g/ρ) − ε|
]2

ρ dρ , (35)

respectively. Observe from (31)-(35) thatEh, Qh, andPh are scalar functions of an n-

dimensional vector of coefficientsηi, i = 1, 2, . . . , n. Also,Ph is a continuous function

of s with continuous first derivative.

The discrete versions of the penalized potentialsEγ[·] andEδ[·] are then defined by

Fγ(s) ≡ Eh(s) +
1

γ
Qh(s), Fδ(s) ≡ Eh(s) +

1

δ
Ph(s), (36)

respectively, for a fixedh. The discrete version of the minimization problem (11), ap-

plied to the constrained disk problem of Section 3.2, consists of finding an n-dimensional

vector rγ ≡ {χ1, χ2, . . . , χn} that minimizes the scalar functionFγ, given by (36.a),

over all vectorss in R
n. A similar statement is also true for the discrete version ofthe

minimization problem (15).

The discrete minimization problems stated above are solvediteratively using a stan-

dard unconstrained second-order minimization method witha line search technique. The

method is based on aniterative descent algorithmdescribed in Aguiar (2006b). Below,

we describe briefly the algorithm for the minimization problem

min
s∈Rn

Fγ(s) , (37)

whereFγ is given by (36.a) together with (33) and (34).

Starting from an initial guesss0 ∈ Rn, which corresponds to the undistorted natural

state of the body, and from a known direction of steepest descentd0, we generate a se-

quence of approximate solutionssk, k = 0, 1, 2, . . ., denoted by{sk} ∈ R
n, using the

recursive formulask+1 = sk + αk dk , whereαk is a scalar minimizingFγ in a given

direction of searchdk. The sequence of points{sk} converges to the solutionrγ ∈ Rn of

the discrete minimization problem (37).
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Next, we increase the penalty parameterγ and repeat the whole minimization process

outlined above. Now, however, we start the new minimizationprocess taking fors0 the

limit point rγ of the previous minimization process. The initial direction of searchd0 is

the direction of steepest descent evaluated at the new points0. Using this procedure for a

fixed h, we generate a sequence{rγ} that converges to a limit pointrh ∈ Rn asγ → 0.

We userh together with the representation (31) to construct the functionuh = (rh · g) eρ.

This function is an approximation of the solutionu of the original problem (1)-(3) for a

fixedh. Lettingh → 0, we generate a sequence{uh} that converges tou.

The algorithm for the minimization problem

min
s∈Rn

Fδ(s) , (38)

whereFδ is given by (36.b) together with (33) and (35), is similar to the algorithm de-

scribed above. Here, however, we letδ → 0 in order to generate a sequence{rδ} that

converges to the limit pointrh ∈ Rn.

5. NUMERICAL RESULTS

We apply the numerical method discussed in Section 4. to solve numerically the

constrained disk problem described in Section 3.2. We have normalized all lengths by

setting the radius of the diskρe = 1. Furthermore, in dimensionless units, the applied

load on the boundary of the disk isp = 500, and the elastic constants arec11 ≡ Eρ/(1 −
νρ νθ) = 105, c22 ≡ Eθ/(1 − νρ νθ) = 103, c12 ≡ νρ c22 = 103, which, in view of (20.c),

yieldκ = 0.1 < 1. Also, we takeε = 0.1 for the lower bound of the injectivity constraint1.

The radius of the core subregionB= where the constraint is active is calculated from (25),

yielding ρa
∼= 0.00583. In addition, we use uniform partitions of the interval(0, ρe) to

simulate a case for which the active regionB= is both not empty and unknown. The most

refined mesh in this work has 4096 elements.

In Fig. 1 we show two graphs with both the exact analytical solution, given by (26)

and represented by the solid line, and the numerical solutions, obtained with the regular

mesh of 4096 elements and represented by the dash-dotted lines. The graph on the left

1These geometric and material constants are used by Fosdick and Royer (2001) and Obeidat et al. (2001)

in their analytical and numerical analyses, respectively,of the compressed disk problem.
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Figure 1: Radial displacementu versus radiusρ for the constrained disk problem with a

fixedh.

side was obtained with the interior penalty formulation using increasing values ofγ and

the graph on the right side was obtained with the exterior penalty formulation using de-

creasing values ofδ. We see from both graphs that the sequences of numerical solutions

converge to limit functions that can not be distinguished from the analytical solution. Ob-

serve from the graph on the left side that the displacement field for γ = 1 is positive

in (0, ρe), even though the disk is under compression. This numerical solution has no

physical meaning and it only provides a starting point in thesearch procedure for the next

solution in the sequence of solutions parameterized byγ, (see Section 5.).

In Fig. 2 we show curves for the base10 logarithm of the error between the exact

solutionu = u eρ, given by (26), and the numerical solutionuh = (rh · g) eρ, using the

regular mesh of 4096 elements. This error is plotted againstboth the base10 logarithm

of the parameterγ of the interior penalty formulation in the graph on the left side and the

base10 logarithm of the parameter1/δ of the exterior penalty formulation in the graph

on the right side. For both formulations, the solid line represents the energy norm of the

error, which is defined by‖u − uh‖E = F(u − uh), whereF is given by either (36.a)

together with (33) and (34) for the interior penalty formulation or (36.b) together with

(33) and (35) for the exterior penalty formulation. The dash-dotted line represents the

Euclidean norm of the error,‖r − rh‖2, for both formulations, where the components

of r are given byξi = u(ρi), i = 1, 2, . . . , n. Observe in the graph on the left side that
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Figure 2: Base10 logarithm of the errore versus base10 logarithm of the parameter a)γ

(left), b) 1/δ (right). Solid line:e ≡ ‖uh − u‖E. Dash-dotted line:e ≡ ‖r − rh‖2.

‖r−rh‖2 decreases monotonically with increasing values ofγ and tends to an assymptotic

value asγ becomes large. A similar behavior is observed for‖u−uh‖E, except that there

is a point off the curve forγ = 105. For the graph on the right side, observe that both

errors are almost constant for small and large values ofδ and that they decrease rapidly

in an interval of intermediate values ofδ. Notice a point off the curve for‖r− rh‖2 when

δ = 10−7.

In both graphs shown in Fig. 2 we see that the errors tend to assymptotic values as

bothγ and1/δ tend to infinity. In Fig. 3 we show curves for the base10 logarithm of

the Euclidean error‖rb − rh‖2 between the best numerical solutionub ≡ rb · g, obtained

with large values of eitherγ or 1/δ for each discretization, and the numerical solution

uh = rh · g. This error is plotted against both the base10 logarithm of the parameterγ in

the graph on the left side and the base10 logarithm of the parameter1/δ in the graph on

the right side.

Observing the graph on the left side of Fig. 3, we see that‖rb − rh‖2 decreases

monotonically with increasing values ofγ and that, except for the curve obtained with

256 elements, which is represented by the plus sign, all the other curves are similar to

each other. In particular, notice that all these curves are almost straight lines forγ > 104.

Performing a linear regression on the curve corresponding to 4096 elements, which is
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represented by the solid line, we find that the angular coefficient is approximately equal

to −0.54, which corresponds to a convergence ratio of10−0.54 ∼= 0.292. Similar analyses

can be performed on the curves shown in the graph on the right side of Fig. 3. In this case,

all but the curve corresponding to 256 elements, are almost straight lines for1/δ > 105.

In this case, the angular coefficient obtained from a linear regression analysis of the curve

corresponding to 4096 elements is approximately equal to−1.02, which corresponds to a

convergence ratio of10−1.02 ∼= 0.096.

We see from the exposition above that, for a sufficiently large value ofn, the sequence

of numerical solutions parameterized byδ converges faster to a limit function than the se-

quence of numerical solutions parameterized byγ. On the other hand, this convergence

is more uniform for the sequence of solutions parameterizedby γ than it is for the se-

quence of solutions parameterized byδ. In particular, notice that this last sequence yields

a convergence ratio close to one for large values ofδ. To see this, we performed a linear

regression analysis on the curve corresponding to 4096 elements for1/δ < 10 and found

that the angular coefficient is approximately equal to−0.01.
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Figure 3: Base10 logarithm of the Euclidean errore = ‖rb − rh‖2 versus base10 loga-

rithm of the parameter a)γ (left), b) 1/δ (right).

Next, we chose the largest value of eitherγ or 1/δ for each discretization and ob-

2Consider the ratio between two consecutive values of a sequence of real numbers. If this ratio tends

to a constant value as the number of terms in the sequence tends to infinity, then the ratio is called the

convergence ratio of the sequence.
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tained curves for both the exact analytical solution, givenby (26), and the corresponding

numerical solution. These curves are shown in Fig. 4. The analytical solution is repre-

sented by the solid line and the numerical solutions are represented by the dash-dotted

lines. The graph shown in the figure is identical to the graph obtained with either the

interior penalty formulation with a fixed largeγ or the exterior penalty formulation with

a fixed smallδ. Observe that the numerical solution converges to the analytical solution

ash ≡ ρe/n → 0, wheren is the number of elements. In addition, a numerical solution

obtained from a coarse mesh, with only64 elements, is already a good approximation for

the exact solution in both cases, even though the distance ofthe nearest node to the origin,

given byρ1 ≡ h = 0.015625 for a regular mesh, is greater than the radius ofB=, given

by ρa
∼= 0.00583.
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Figure 4: Radial displacementu versus radiusρ for the constrained disk problem for

either largeγ or smallδ.

In Fig. 5 we show curves for the base2 logarithm of the error between the exact

solutionu = u eρ, given by (26), and the numerical solutionuh = (rh · g) eρ versus

the base2 logarithm of the number of elementsn. The solid line represents the energy

norm of the error,‖u − uh‖E, and the dash-dotted line represents the Euclidean norm of

the error,‖r − rh‖2, where we recall from above that the components ofr are given by

ξi = u(ρi), i = 1, 2, . . . , n. Results for the interior and exterior formulations are shown

in the left and right graphs, respectively. Observe that thegraphs are very similar to each

other. In both cases the error decreases with the increasingnumber of elements up to 128
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Figure 5: Base2 logarithm of the errore versus base2 logarithm of the number of ele-

mentsn. Left: Interior penalty formulation with largeγ. Right: Exterior penalty formu-

lation with smallδ. Solid line:e ≡ ‖uh − u‖E. Dash-dotted line:e ≡ ‖uh − u‖2.

elements, which corresponds to the distanceρ1 = 0.00781, then increases and reaches a

peak forn = 256, which corresponds toρ1 = 0.00391, decreasing thereafter. These two

values ofρ1 are, respectively, above and below the value ofρa
∼= 0.00583.

Notice from Fig. 5 that all curves are almost straight lines for n ≥ 1024 elements.

Performing a linear regression on these curves, we found that, for both formulations, the

angular coefficient is approximately equal to−0.8 for the energy norm of the error and to

−1.6 for the Euclidean norm of the error. These values correspondto convergence ratios

of 2−0.8 ∼= 0.57 and of2−1.6 ∼= 0.34, respectively.

6. Conclusion

We presented a comparative study between an interior and an exterior penalty formu-

lation for a class of constrained minimization problems considered by Fosdick and Royer

(2001). A constrained problem in this class consists of finding a minimizeru for the to-

tal potential energyE of classical linear theory of elasticity over a setAε of admissible

displacement fields that satisfy the local injectivity constraintdet(1 + ∇u) − ε ≥ 0 for a

sufficiently smallε ∈ R.

In Section 5. we showed numerical results that are in very good agreement with ana-

lytical results presented in Section 3.2. In addition, we showed some convergence results
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which indicate that, for a fixed characteristic lengthh of the finite element mesh, the se-

quence of numerical solutions obtained with the exterior penalty formulation converges

faster to a limit function than the sequence of numerical solutions obtained with the inte-

rior penalty formulation. The results also indicate that this limit function is the same for

both formulations. We then constructed a sequence of limit functionsuh and observed

that the convergence ratio for this sequence is the same for either one of the formula-

tions, even though the convergence ratio obtained with the energy norm of the error is

significantly different from the Euclidean norm of the error.
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