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Abstract

This paper focuses on the effect of limited linear kinematic hardening on shakedown lim-

its for variable loadings. We briefly present the general equations of shakedown analysis

(Borino, 2000) when internal variables are included. Then, a model for hardening plastic-

ity due to Stein et al. (1993) is adopted to obtain analytical solutions for the shakedown

problem in a small restrained block under variable thermal and mechanical loadings.

1 Introduction

Shakedown analysis of an elastic-plastic solid or structure, submitted to variable loadings,

is concerned with the conditions to guarantee that a prescribed load domain does not

contain any program, or cycle, leading to failure by alternating plasticity, incremental

collapse (ratcheting) or plastic collapse.

For elastic plastic bodies submitted to variable loadings, the word shakedown is tra-

ditionally understood as synonymous of elastic shakedown, elastic adaptation or elastic

stabilization, all these referring to a type of response where plastic dissipation ceases after

an initial stage of plastic deformation (eventually nonexistent).

All the theory of shakedown stands on the fundamental Melan-Koiter’s theorem (Koi-

ter, 1960; Nguyen, 2000; Kamenjarzh, 1996): An elastic ideally plastic body will shake-
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down under a given loading history, in the sense that the total plastic work is bounded

irrespective of the initial conditions, if there exist a time-independent residual stress field

σr, a scalar m > 1 and an instant t0 such that the fictitious elastic stresses σE, produced

by the loading program acting on the unlimitedly elastic reference body, when amplified

by the factor m and superposed to the fixed residual stress field σr render plastically

admissible stresses ever after t0.

The classic shakedown theory, in its simplest form (Koiter, 1960), is formulated for

a solid presenting ideally plastic behavior. Extensions of this basic theory, including

hardening, have also been presented in terms of internal variables and most often adopt-

ing generalized standard material models; see e.g. Nguyen (2000); Borino (2000); Maier

(2001). This gives a framework to propose special models, and implementations of the

constitutive equations, oriented to reproduce the behavior of some structures when sub-

mitted to critical cycles of loading.

This paper focuses on the effect of limited linear kinematic hardening on shakedown

limits for variable loadings.

We briefly present the general equations of shakedown analysis (Stein et al., 1993;

Borino, 2000; Zouain and Silveira, 2000; Zouain, 2004; Nguyen, 2003; Weichert and Gross-

Weege, 1988) when internal variables are included. Then, a model for hardening plasticity

due to Stein et al. (1992, 1993); Stein and Huang (1995) is adopted to obtain analytical

solutions for the shakedown problem in a small restrained block under variable thermal

and mechanical loadings.

The aim of obtaining this analytical solution is twofold: firstly, it allows discussion and

understanding of the effects on shakedown conditions of including kinematical hardening

in an ideally plastic Mises model, and secondly, this exact solution is intended to be used

as benchmark for numerical procedures for shakedown analysis based on direct methods

and finite element discretizations.

The notation adopted here is as follows. The stress tensor is denoted σ, the strain

tensor is ε and the strain rate is d. The mean stress and deviatoric part of a stress tensor

are denoted

σm =
1

3
trσ S := σdev = σ − σm1 (1)
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where 1 is the identity and superscript dev denotes the deviatoric part of a tensor. The

principal stresses are {σi, i = 1, 2, 3}.

2 Kinematical hardening following Stein’s model

The plasticity model proposed by Erwin Stein and coworkers (Stein et al., 1992, 1993),

including limited linear kinematic hardening in the usual von Mises model, is defined by

the following two plastic modes

fS1(σ,A) =
3

2
‖(σ − A)dev‖2 − σ2

Y 0 (2)

fS2(A) =
3

2
‖Adev‖2 − (σY − σY 0)

2 (3)

where the second order tensor A is the statical internal variable of the model, with the

meaning of a back-stress. The material constants σY and σY 0 are the final and initial

plastic limits of the material in the uniaxial tensile test. Further, we assume that the

hardening phase is smaller than the purely elastic range, that is 1
2
σY 6 σY 0 6 σY . Then

ζ := σY − σY 0 6 σY 0 (4)

It is worth noting that only the the deviatoric part of A appears in the constitutive

equations of this material. Thus, the mean component Am := 1
3
trA of the back-stress

is irrelevant, or indetermined. As a consequence of this, and for the sake of simplicity,

we adopt: (i) a deviatoric internal variable A in general triaxial situations or (ii) a plane

internal variable A when plane stress conditions apply (note that in this case the deviatoric

part must be computed).

The flow equations of this plasticity model are associated, thus derived by using the

gradients of the plastic modes, written below

∇σfS1 = 3(S − Adev) ∇AfS1 = −3(S − Adev) (5)

∇σfS2 = 0 ∇AfS2 = 3Adev (6)
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Figure 1: Plane stress representation for Stein’s model of kinematical hardening. The
generalized stress shown, (σ,A), is admissible with respect to both plastic modes.

In this notation, the flow equations read

dp = λ̇∇σfS1(σ,A) β̇ = λ̇∇AfS1(σ,A) + λ̇A∇AfS2(A) (7)

where dp is the plastic strain rate and β̇ the hardening flux. The plastic multipliers λ̇ and

λ̇A are constrained by the complemantarity conditions

λ̇fS1(σ,A) = 0 fS1(σ,A) 6 0 λ̇ > 0 (8)

λ̇AfS2(A) = 0 fS2(A) 6 0 λ̇A > 0 (9)

For future use we write below the component equations obtained from the above

intrinsic equations in the case of plane stress conditions. Notice that we choose Az = 0

for convenience.

fS1 = (σx − Ax)
2 + (σy − Ay)

2 − (σx − Ax)(σy − Ay) + 3(σxy − Axy)
2 − σ2

Y 0 (10)

fS2 = A2
x + A2

y − AxAy + 3A2
xy − (σY − σY 0)

2 (11)
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∇σfS1 =

[
2(σx − Ax)− (σy − Ay)

2(σy − Ay)− (σx − Ax)

]
∇AfS1 =

[
−2(σx − Ax) + (σy − Ay)

−2(σy − Ay) + (σx − Ax)

]
(12)

∇σfS2 =

[
0

0

]
∇AfS2 =

[
2Ax − Ay

2Ay − Ax

]
(13)

3 A restrained block under thermo-mechanical

loading

Consider the small block of Figure 2 that is under plane stress conditions for the plane

(x, y). Additionally, deformation is restrained in the y–direction. The material is isotropic,

linear elastic and obeys the limited linear kinematic hardening plasticity model described

in the previous subsection. The imposed external actions are: (i) a variable traction p and

(ii) a variable thermal loading q = Ecεθ (q is a stress parameter, E is Young’s modulus,

cε is the thermal expansion coefficient and θ is the variable temperature increment).

Thus the domain of load variation ∆0, shown in Figure 3, is represented, in the stress

space, by the polygon ∆, shown in Figure 2, with vertices

σ1 = (σ1
x, σ

1
y) = (0, 0) (14)

σ2 = (σ2
x, σ

2
y) = (0,−q) (15)

σ3 = (σ3
x, σ

3
y) = (p, νp− q) (16)

σ4 = (σ4
x, σ

4
y) = (p, νp) (17)

4 The equations of shakedown analysis

Shakedown analysis is concerned with the computation of the critical factor µ which

amplifies the load domain ∆0, as shown in Figure 3, ensuring that elastic shakedown occurs
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Figure 2: The domain of variable loading ∆ for a restrained block under independent
thermal and mechanical loadings.

for any load program or load cycle contained in the amplified domain µ∆0. Moreover,

any arbitrary load domain µ∗∆0 with µ∗ > µ contains one program at least leading to

failure by alternating plasticity, incremental collapse or plastic collapse.

Consequently, this safety factor µ ensures elastic shakedown and thus prevents against

the three modes of failure described in the classical theory of shakedown (Koiter, 1960).

The system of equations and inequalities stated below represents the problem of shake-

down analysis, that is, the problem of computing the critical scalar factor µ. In the sequel,

we briefly explain the meaning of this system of equations, which constitute the set of op-

timality conditions for the variational formulations of shakedown analysis (Borino, 2000;

Zouain and Silveira, 2000; Zouain, 2004)
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For given {σk, k = 1 : 4}, find µ, σr, A and v such that

BT σr = 0 (18)
∑

dk = Bv (19)
∑

β̇k + β̇A = 0 (20)
∑

σk · dk = 1 (21)

dk = λ̇k∇σf
k k = 1 : 4 (22)

β̇k = λ̇k∇Afk k = 1 : 4 (23)

β̇A = λ̇A∇AfA (24)

λ̇kfk = 0 k = 1 : 4 (25)

λ̇AfA = 0 (26)

fk := fS1(µσk + σr, A) ≤ 0 k = 1 : 4 (27)

fA := fS2(A) ≤ 0 (28)

λ̇k ≥ 0 k = 1 : 4 (29)

λ̇A ≥ 0 (30)

Equation (18) imposes that σr is a residual stress (i.e. a self-equilibrated stress field).

Indeed, we consider here the following discrete form of compatibility and equilibrium

d = Bv BT σr = 0 (31)

where B is the strain-displacement matrix and v is the vector of velocities after imposing

displacement constraints. This is exact for the case of the example treated in following

sections and, in the case of a continuum, it is created by a finite element discretization.

Equation (22) defines a plastic strain rate dk as the flow produced by the compound

stress µσk + σr and the thermodynamic force A. Whenever this state, associated to the

load vertex k, is active (i.e. at the boundary of fk = 0), it may effectively act during

the critical load cycle. In this case, this load may produce a non-vanishing plastic flow

contribution, dk, adding to the admissible plastic strain rate cycle Bv, according to (19).
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Likewise, (23) and (24) define hardening fluxes that must sum zero, according to (20),

because there is no change in hardening variables during a critical mechanism of failure

under variable loadings and thus the total hardening flux β̇ is zero.

The complementarity conditions required by Melan’s theorem complete the system.

The system is reduced by substituting (22), (23) e (24) in the remaining conditions:

BT σr = 0 (32)
∑

λ̇k∇σf
k = Bv (33)

∑
λ̇k∇Afk + λ̇A∇AfA = 0 (34)
∑

σk · λ̇k∇σf
k = 1 (35)

λ̇AfA = 0, λ̇kfk = 0 k = 1 : 4 (36)

fA := fS2(A) ≤ 0, fk := fS1(µσk + σr, A) ≤ 0 k = 1 : 4 (37)

λ̇A ≥ 0, λ̇k ≥ 0 k = 1 : 4 (38)

Furthermore, the equations for the shakedown analysis of the hardening block are now

written in component form as follows

σr
x = 0 (39)

∑
λ̇k[µ(2σk

x − σk
y)− σr

y − 2Ax + Ay] = dx (40)
∑

λ̇k[µ(2σk
y − σk

x) + 2σr
y − 2Ay + Ax] = 0 (41)

∑
λ̇k[−µ(2σk

x − σk
y) + σr

y + 2Ax − Ay] + λ̇A(2Ax − Ay) = 0 (42)
∑

λ̇k[−µ(2σk
y − σk

x)− 2σr
y + 2Ay − Ax] + λ̇A(2Ay − Ax) = 0 (43)
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∑
λ̇k

{
σk

x[µ(2σk
x − σk

y)− σr
y − 2Ax + Ay] + σk

y [µ(2σk
y − σk

x) + 2σr
y − 2Ay + Ax]

}
= 1

(44)

λ̇k[(µσk
x − Ax)

2 + (µσk
y + σr

y − Ay)
2 − (µσk

x − Ax)(µσk
y + σr

y − Ay)− σ2
Y 0] = 0 k = 1 : 4

(45)

λ̇A[A2
x + A2

y − AxAy − (σY − σY 0)
2] = 0 (46)

(µσk
x − Ax)

2 + (µσk
y + σr

y − Ay)
2 − (µσk

x − Ax)(µσk
y + σr

y − Ay)− σ2
Y 0 ≤ 0 k = 1 : 4

(47)

A2
x + A2

y − AxAy − (σY − σY 0)
2 ≤ 0 (48)

λ̇A ≥ 0 λ̇k ≥ 0 k = 1 : 4 (49)

5 Finding shakedown limits for the hardening block

This section is devoted to find closed form solutions for the shakedown problem of the

proposed example of a hardening block under variable thermal and mechanical loadings.

Our procedure is to identify different ranges of loading parameters where we assume

some hypothesis on the response of the body, then use a subset of equations to compute

explicit solutions and finally verify our initial guess by checking the entire system of

equations given in the previous section.

We begin by observing that (40) and (42) imply that

λ̇A(2Ax − Ay) = dx (50)

Likewise (41) and (43) give

λ̇A(2Ay − Ax) = 0 (51)

It follows from (50) and (51) that:

1. Equation (42) can be substituted in the system above by the simpler one (50).

Likewise, (43) can be substituted by (51).

2. If we assume that the critical mechanism is incremental collapse or plastic collapse,
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i.e. d 6= 0, then

λ̇A > 0 (52)

because otherwise (50) enforces d = 0. This, due to (51), implies that

Ax = 2Ay (53)

Consequently

fS2(A) = 0 (54)

and also √
3Ax = ±2ζ

√
3Ay = ±ζ dx = ±

√
3ζλ̇A (55)

5.1 Alternating plasticity acted by loads 1 and 3

We assume now that the failure mode is alternating plasticity produced by loads 1 and 3

and that the inequality constraints corresponding to loads 2 and 4 are inactive. In this

case (34) reads

λ̇1∇σfS1(µσ1 + σr, A) + λ̇3∇σfS1(µσ3 + σr, A) = 0 (56)

This condition can be interpreted geometrically considering the ellipse representing the

first plastic mode, fS1 = 0, in the plane with coordinates σx and σy. In fact, in this

representation we have (µσ1 +σr, A) ≡ (−Ax, σ
r
y−Ay) and (µσ3 +σr, A) ≡ (p−Ax, νp−

q+σr
y−Ay) and the condition above means that these points determine a diameter because

the normals are opposite. Hence, the coordinates of these points are respectively equal in

absolute value and opposite in sign. This gives the following relations

2Ax = p 2(σr
y − Ay) = q − νp (57)

Now, we use fS1(µσ1 + σr, A) = 0 to obtain

A2
x + (σr

y − Ay)
2 + Ax(σ

r
y − Ay) = σ2

Y 0 (58)
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Figure 3: Interaction (Bree) diagram for a restrained block under independent variations
of thermal and mechanical loadings. Hardening material, according to Stein’s model with
ν = 0.2 and σY 0 = 0.8σY , compared to ideally plastic Mises material. The limiting curves
are labeled: AP for alternating plasticity, given by (59), IC(1&3) for incremental collapse
acted by loads 1 and 3, given by (68), IC(3&4) given by (74)) and C for plastic collapse.
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The following interaction relation for the critical loading parameters p = µp and q = µq

associated to the mechanism of alternating plasticity comes from (57) and (58)

(1− ν + ν2)p2 + q2 + (1− 2ν)pq = 4σ2
Y 0 (59)

Moreover, the solution for the critical amplifying factor is

µ =
2σY 0

(1− ν + ν2)p2 + q2 + (1− 2ν)pq
(60)

The alternating plasticity (AP) limit given by (59) is represented by the curve ab in

Figure 3.

In the particular case when the loading is solely due to temperature variations, with

no mechanical load, the critical parameter, used to prevent alternating plasticity, is

µ =
2σY 0

q
(61)

The above solution, given by (59) and (60), is valid while the alternating plasticity

mechanism is the critical failure mode that determines the elastic shakedown limit. It can

be shown that this is the case for the following range of loading parameters

0 6 q

p
6 m (62)

with

m =
1

2




√√√√(1− 2ν)2 − 4

[
1− ν + ν2 − 3

(
σY 0

2ζ

)2
]
− 1 + 2ν


 (63)

This determines the limits a and b of the alternating plasticity (AP) part of the interaction

diagram of Figure 3.

To conclude the analysis of alternating plasticity let us consider the particular case of

a block made of an ideally plastic material. For this system σY 0 = σY and the mechanism

of alternating plasticity can only occur without mechanical loading and with the following
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shakedown factor

µ =
2σY

q
(64)

5.2 Incremental collapse acted by loads 1 and 3

According to (55) we assume

√
3Ax = 2ζ

√
3Ay = ζ (65)

Then, we introduce these relations in fS1(µσ1 + σr, A) = 0 and fS1(µσ3 + σr, A) = 0 to

obtain

σr
y =

√
σ2

Y 0 − ζ2 (66)

p2 + (νp− q + σr
y)

2 − p(νp− q + σr
y)−

√
3ζp + ζ2 − σ2

Y 0 = 0 (67)

The following interaction relation for the critical loading parameters p = µp and q = µq

associated to the mechanism of incremental collapse involving loads 1 and 3 comes from

(66) and (67)

(1− ν + ν2)p2 + q2 + (1− 2ν)pq − [(1− 2ν)p + 2q)]
√

σ2
Y 0 − ζ2 −

√
3ζp = 0 (68)

Furthermore, the critical factor is

µ =
[(1− 2ν)p + 2q)]

√
σ2

Y 0 − ζ2 +
√

3ζp

(1− ν + ν2)p2 + q2 + (1− 2ν)pq
(69)

The incremental collapse limit given by (68) is represented by the curve bc, labeled

IC 1&3, in Figure 3. The analogous limit for the case of ideal plasticity is also given in

the figure and corresponds to the equation below

(1− ν + ν2)p2 + q2 + (1− 2ν)pq − (1− 2ν)σY p− 2σY q = 0 (70)
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5.3 Incremental collapse acted by loads 3 e 4

According to (55) we assume

√
3Ax = 2ζ

√
3Ay = ζ (71)

Then, we introduce these relations in fS1(µσ3 + σr, A) = 0 and fS1(µσ4 + σr, A) = 0 to

obtain

p2 + (νp− q + σr
y)

2 − p(νp− q + σr
y)−

√
3ζp + ζ2 − σ2

Y 0 = 0 (72)

p2 + (νp + σr
y)

2 − p(νp + σr
y)−

√
3ζp + ζ2 − σ2

Y 0 = 0 (73)

Combining the above relations we eliminate the unknown σr
y in order to obtain the

following interaction relation for the critical loading parameters p = µp and q = µq

associated to the mechanism of incremental collapse involving loads 3 and 4.

3p2 + q2 − 4
√

3ζp = 4
(
σ2

Y 0 − ζ2
)

(74)

with the corresponding amplifying factor

µ =
2
[√

3ζp +
√

(3p2 + q2) σ2
Y 0 − q2ζ2

]

3p2 + q2 (75)

Moreover, the solution for the residual stress is

σr
y =

[(1− 2ν)p + q]
[√

3ζp +
√

(3p2 + q2) σ2
Y 0 − q2ζ2

]

3p2 + q2 (76)

The incremental collapse limit given by (74) is represented by the curve cd, labeled

IC 3&4, in Figure 3. The analogous limit for the case of ideal plasticity is also given in

the figure and corresponds to the equation below

3p2 + q2 = 4σY (77)
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6 Conclusions

The effects of including limited linear kinematic hardening in a Mises material, with re-

spect to shakedown limits, are demonstrated in this paper by considering explicit solutions

for a block submitted to independent variations of thermal and mechanical loadings.

The example is chosen because it is simple and presents the essential characteristic of

the classical Bree’s problem of a tube under combined temperature and pressure fluctua-

tion (Bree, 1967).

The general picture of the analytical results for the shakedown analysis of the block of

hardening material are depicted in Figure 3, together with analogous results for a Mises

ideally plastic material. It is important for the interpretation of this comparison and the

discussion in the sequel to point out that we compare a hardening material and an ideally

plastic one that share the same maximum yield stress with the real material. Indeed, we

never use in this paper the point of view that hardening adds an extra amount of plastic

strength to the ideally plastic model. Instead, we consider that ideal plasticity models

neglect any strain hardening below the maximum yielding stress of the real material.

The hardening block of the example presents some expected features in its behavior.

For instance: (i) the collapse load is unaffected compared to ideal plasticity and (ii) the

critical cycle characterizing failure under pure temperature variation reduces in amplitude

the same amount than the reduction in the initial yielding parameter.

The hardening material may fail by alternating plasticity, i.e. low cycle fatigue, under

thermal loads superposed to small mechanical loads (see curve AP in Figure 3), even before

incremental collapse becomes feasible, while in ideal plasticity alternating plasticity is only

critical with no mechanical load.

It is worth to recall now that the class of failure mechanisms called incremental col-

lapse, that is those presenting cumulative plastic deformation per cycle, can be split in

simple mechanisms of incremental collapse (SMIC) and combined mechanisms of incre-

mental collapse (CMIC). In the latter there is one point in the body, at least, undergoing

alternating plastic deformations, besides the global increase in the plastic deformation

per cycle of the body. In the example adopted in this paper both regimes of incremental

collapse of the block, IC (1&3) and IC (3&4) in Figure 3, are combined mechanisms of
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incremental collapse (Zouain and Silveira, 2000; Zouain, 2004). Consequently, the reduc-

tion of the limits determined by incremental collapse failure, with respect to the ideally

plastic material, can be explained by the previously observed reduction in the capacity to

resist low cycle fatigue introduced by considering hardening before yielding.

The analytical solutions accomplished in the present study are intended also to serve

as benchmark for algorithms and numerical procedures pertaining to the class of direct

methods of shakedown analysis using finite element discretizations (Zouain et al., 2002).
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