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Abstract. The ground effect phenomenon has received a great deal of attention owing to its practical significance for 
the automotive industry. Results available in the literature has been shown that the mechanisms of ground effect are 
still far from being fully understood mainly due to the confusing influence of the boundary layer formed on the ground. 
Experimental results from Nishino (2007) reported that a ground running with the incoming flow velocity  practically 
does not allow the development of boundary layer. Based on this experimental observation, a numerical 
implementation can be performed using a fixed ground, on which is necessary to impose only the impermeability 
condition on the ground surface. As consequence, a linear system of algebraic equations for the unknown vortex 
strengths is formed in order to ensure that the no-slip condition is satisfied and that circulation is conserved only on 
the body surface in the vicinity of a ground plane. In this paper are compared two versions of a Lagrangian vortex 
method implementation to simulate the two-dimensional, incompressible, unsteady flow around a circular cylinder in 
moving ground effect at a high Reynolds number: one based on the Nishino´s observation, and the other based on the 
model of a true moving ground. In the second case, the ground runs in a manner that one cycle of motion changes the 
co-ordinates of each panel that represents the ground surface, which travels at the same speed as the freestream. The 
true moving ground effect implementation imposes the impermeability and no-slip conditions on the body and ground 
plane surfaces. The method takes into account the sub-grid scale phenomena through a second-order velocity structure 
function adapted to the Lagrangian vortex method. Results are presented and calculations of the near wake show that 
the wake interference mechanism is present even for the true moving conditions of ground plane. 
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1. INTRODUCTION 
 

Flows around bluff bodies include a variety of fluid dynamic phenomena, such as separation, vortex shedding and 
transition to turbulence, all of which stimulates scientific interest and has great impact in engineering applications. The 
problem of bluff body flows is applicable, for example, to the aerodynamic of road vehicle and the major interest came 
from motor racing companies. Cylinders having a two-dimensional structure permit that numerical and experimental 
investigations reveal the fundamental features of flows, where a moving ground situation is essential. 

The characteristics of flow around a circular cylinder placed near and parallel to a plane boundary, or ground, are 
governed not only by the Reynolds number but also by gap ratio, i. e., the ratio of the gap between the cylinder and the 
ground, h, to the cylinder diameter d. However, the mechanisms of the ground effect are still far from being fully 
understood due to a variety of other influencing factors, in particular the confusing influence of the boundary layer 
formed on the ground. 

One of the first investigations on the effects of the gap ratio h/d was carried out by Taneda (1965). He visualised the 
flow behind a circular cylinder toweed through stagnant water close to a stationary wall (i. e., the water and wall 
moving together relative to the cylinder and hence no boundary layer formed on the wall) at a very low Reynolds 
number of 170. His work showed that regular vortex shedding occurred at 0.60=dh , whereas only a weak single row 
of vortices was generated at 0.10=dh . 

Roshko et al. (1975) measured the time-average drag and lift coefficients, CD and CL, for a circular cylinder placed 
near a fixed wall in a wind tunnel at 4102.0×=Re , and showed that CD rapidly decreased and CL increased as the 
cylinder came close to the wall. Zdravkovich (2003) studied the drag behaviour for a circular cylinder placed near a 
moving ground running at the same speed as the freestream for a higher Reynolds number ( 5102.5×=Re ), and verified 
that there was practically no boundary layer on the ground. The decrease in drag due to the decrease in h/d did not occur 
in his measurements. However, it was not clear whether this was attributed to the non-existence of the wall boundary 
layer or the higher Reynolds number, or any other influencing factors. 

Nishino (2007) reproduced the same tests made by Zdravkovich (2003) for 4104.0×=Re and 5101.0×=Re . The 
end conditions were taking into account by the use of end-plates in the cylinder extremities, in order to turn the flow 
approximately two-dimensional. When the end plates were not used (three-dimensional flow, essentially), the drag 
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coefficient increased as the gap ratio (h/d) decreased. Nishino (2007) attributes this behaviour to the non-formation of 
boundary layer on the ground. 

Bimbato et al. (2009) used a Lagrangian vortex method to simulate numerically the particular situation studied 
experimentally by Nishino (2007) for the cylinder with end-plates at 5101.0×=Re . Their numerical strategy fixed the 
ground and the vorticity generation was simulated only from the cylinder surface. As consequence, the moving ground 
effect was not taking into account effectively in their numerical simulations. Numerical results from Bimbato et al. 
(2009) included the time evolution of the lift and drag coefficients and the instantaneous pressure distributions for 
strategic chosen instants of the time evolution. This approach was very interesting and illustrated the near field wake 
which is important to understand the flow behaviour. However, the sub scale phenomena were not simulated. 

Recently, Kamemoto (2009) presented an overview of development of vortex methods after 1960. He showed that 
the attractive features of Lagrangian vortex method are: (i) the discrete vortex method represents the vorticity by 
discrete vortices, whose transport at each time step is carried out in sequence to simulate convective and viscous 
diffusion process; (ii) grid-generation in a flow field is not necessary at all; (iii) use of RANS-type turbulence models is 
not necessary and (iv) moving or deforming boundary problems are easily dealt with. 

More details of vortex methods are presented by Leonard (1980), Sarpkaya (1989), Lewis (1999), Kamemoto 
(2004), Stock (2007) and Hirata et al. (2008). 

In the present paper a new numerical model of moving ground is presented and it is associated with a Lagrangian 
vortex method using Large Eddy Simulation (Alcântara Pereira et al., 2002). The ground surface is represented by 
source flat panels (Katz and Plotkin, 1991) and with the dislocation of each flat panel; the ground is animate with a 
speed equal to the incident flow velocity. The code developed here, therefore, is an application to vortex flows of 
moving boundary problems. Numerical results from Bimbato et al. (2009) are reproduced here, using LES turbulence 
model, to be compared with true moving ground implementation. 

Alcântara Pereira et al. (2004) observed that: “… the turbulence is essentially a 3-D phenomenon and yet one is 
modeling it using a 2-D approach; obviously it is then assumed 2-D turbulence. With this procedure one are still left 
with important turbulence aspects and the final results are also improved. The use of 2-D turbulence may explain some 
numerical results that depart from the experimental values”. 
 
2. GOVERNING EQUATIONS 
 

Figure 1 presents schematically the two-dimensional unsteady and incompressible flow of a Newtonian fluid with 
constant properties which drain around a circular cylinder placed near a plane surface. The ground has the same speed 
as the oncoming flow. One can define: the incident flow (U); the semi-infinity fluid domain ( 321 SSSΩ ∪∪= ), where 

1S  is the body surface; 2S  is the plane surface and 3S  is the surface defined far from the body. 
 

 
 

 
 

 
Figure 1. Definition of the fluid region 

 
The problem is governed by equations (Alcântara Pereira et al., 2002): 
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where p  is the pressure field filtered, ρ  is the density, ν  is the molecular viscosity coefficient, tν  is the eddy viscosity 
coefficient, and the deformation tensor of the filtered field is defined as: 
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When using Lagrangian vortex method, the model proposed by Smagorinsky (1963) is inconvenient by the use of 

deformation rate (derivatives). 
As an alternative, Métais and Lesieur (1992) considered that the small scales may not be too far from isotropic and 

proposed to use the local kinetic-energy spectrum (kc)E  at the cut-off wave number ( ck ) to define the eddy viscosity tν . 
Using a relation given by Batchelor (1953), Lesieur and Métais (1996) proposed to calculate the local spectrum at 

ck  with a second-order velocity structure function 2F  of the filtered field: 
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From the Kolmogorov spectrum the eddy viscosity can be written as a function of 2F : 
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where 1.4=KC  is the Kolmogorov constant. 
 

In Eq. (4) is important to note that the “average operator” is applied in the velocities ( )t,rxu +  calculated under the 
surface of a sphere with center in x and radius r . 

The great advantage of the formulation presented above is the use of the concept of velocity fluctuation (differences) 
to be combined with Lagrangian vortex method. 

Therefore, the strategy is to use the continuity equation, Eq. (1), and the Navier-Stokes equations, Eq. (2), to 
simulate the phenomena that occur in the macro-scales with the Lagrangian vortex method. The phenomena that occur 
in the micro-scales should be take into account through the eddy viscosity coefficient, Eq. (5); this coefficient ( tν ) is 

modeled with the second-order velocity structure function 2F  of the filtered field, see Eq. (4). 
It is necessary to impose the boundary conditions. The impenetrability condition demands that the normal velocity 

component of the fluid particle ( nu ) should be equal to the normal velocities components of the surfaces 1S  and 2S  
( nv ): 

 
0vu nn =− , on 1S  and 2S ,             (6) 

 
The no-slip condition demands that the tangential velocity component of the fluid particle ( τu ) should be equal to 

the tangential velocity component of the surface 1S  ( τv ), when there is no discrete vortex been generated under surface 

2S  (Bimbato et al., 2009): 
 

0vu ττ =− , only on 1S .             (7) 
 

If the plane surface is animated with speed and discrete vortices are been generated under this surface, it must be 
written: 

 
0vu ττ =− , on 1S  and 2S .             (8) 
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The last boundary condition to be imposed is that, far away, the perturbation caused by the solid boundaries fades 
as: 

 
U→u , on 3S .              (9) 

 
3. NUMERICAL SOLUTION: LAGRANGIAN VORTEX METHOD WITH LES SCHEME 
 

The dynamics of the fluid motion is studied by taking the curl of the Eq. (2), obtaining the new 2-D vorticity 
equation (Alcântara Pereira et al., 2002): 
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where the bars that identified the filtered field were omitted and the modified Reynolds number is defined in Eq. (14). 

Chorin (1973) proposed the “Viscous Splitting Algorithm” to simplify the numerical implementation of the vortex 
method; with this algorithm, in the same time increment, the convective effects are solved independently of the viscous 
diffusion effects. In this way, the convective equation takes the well known Lagrangian form: 
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On the other hand, the diffusive equation is given by: 
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It is obvious from the equation above that the viscosity effects are taking into account in the diffusive process. 
Alcântara Pereira et al. (2002) make two adaptations necessary to implement the second order structure function to 

the 2-D Lagrangian vortex method, see Eq. (4): (i) the points where the velocities must be calculated are placed inside a 
circular crown defined by 0i σr 0.1=  and 0e σr 2.0= , where ri and re are the internal and external radius of the circular 
crown, respectively, and 0σ  is the Lamb vortex core of the vortex under analysis; (ii) to compute the second-order 
velocity structure function, the points where the velocities are calculated are the same as the positions of the vortices 
which are near the vortex under analysis and finally: 
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where tu  is the total velocity in the point, NV indicates the number of vortices inside the circular crown and ri is the 
distance between the vortex under analysis and the vortices inside the circular crown. 

In the sequence, the eddy viscosity coefficient is calculated making 0σ∆ =  in Eq. (5). After this, the modified 
Reynolds number can be defined as: 
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where d is the cylinder diameter and the dimensionless time is d/U. The Lamb vortex core is calculated as: 
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where ∆t  is the time increment of the numerical simulation. 
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To solve the convective problem, see Eq. (11), is necessary to determine the velocity field which is composed by 
three contributions: due to the incident flow ( )tx,ui , solid boundaries ( )t,xub , and the vortex-vortex interaction ( )t,xuv . 
Thus: 

 
( ) ( ) ( ) ( )t,t,t,t, xiuvxiubxuixiu ++= , Z,i 1=         (16) 

 
where Z is the total number of Lamb discrete vortices in the wake. 

The contribution of the incident flow is given by: 
 

1=1ui  and 0=2ui .            (17) 
 
The contribution of the solid boundaries is given by the source panel’s method (Katz and Plotkin, 1991), so: 
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where NP is the number of flat panels that represents the solid boundaries, const=kσ  is the density of sources per unit 

length and ( )( )kj
i
jk xtxc −  is the i component of the velocity induced at discrete vortex j by k panel. 

Finally, the contribution of the vortex cloud is given by: 
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where kΓ  is the intensity of the k vortex and ( )( )kj

i
jk xtxc −  is the i component of the induced velocity in a discrete 

vortex j by a k discrete vortex. 
With the velocity field, the convection is calculated by a first order Euler scheme: 
 

( ) ( ) ( )( )∆tt,tt∆tt ixiuixix +=+ , Z,i 1= .         (20) 
 
The diffusion equation, Eq. (12), is solved by the random walk scheme (Lewis, 1999), which consists in add a 

random displacement to Eq. (20): 
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where P and Q are random numbers with 10 << P  and 10 << Q . 

Once, with the vorticity field the pressure calculation starts with the Bernoulli function, defined by Uhlman (1992) 
as: 
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Kamemoto (1993) used the same function and starting from the Navier-Stokes equations was able to write a Poisson 

equation for the pressure. This equation was solved using a finite difference scheme. Here the same Poisson equation 
was derived and its solution was obtained through the following integral formulation (Shintani and Akamatsu, 1994): 
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where 1=H  in the fluid domain, 0.5=H  on the boundaries, Ξ  is a fundamental solution of the Laplace equation and 
ne  is the unit vector normal to the solid surfaces. 

The drag and lift coefficients are expressed by (see Bimbato, 2008): 
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where k∆S  is the length and kβ  is the angle and both of the k panel. 
 
4. RESULTS AND DISCUSSION 
 
4.1. Flow around an isolated circular cylinder 
 

The flow past an isolated circular cylinder has been the object of considerable attention in preliminary numerical 
experiments to choose suitable values for: number of flat panels used to represent the circular cylinder ( 300=NP ), 
time increment ( 0.05=∆t ), core of a Lamb vortex ( 0.0010=0σ ). The distance ε  off the panel where the new vortices 
are generated per time step is set equal to 0σ  for all the cases studied. More details are discussed in Bimbato (2008). 

The time history of the aerodynamic forces, calculated from Eq. (24) and Eq. (25), is presented in Figure 2. The 
vortex shedding period can be seen in oscillations of the lift and drag coefficients. As soon as the numerical transient is 
over and the periodic steady state regime is reached (about 15 units of non-dimensional time) the drag coefficient 
oscillates two times more than the lift coefficient, which is a characteristic of an isolated circular cylinder. This means 
that for each vortex structure detachment, the lift coefficient completes a period, while the drag coefficient completes 
two periods. 

 

 
 

Figure 2. Time evolution of the aerodynamic forces for the isolated circular cylinder ( 5101.0×=Re ) 
 

The frequency of this detachment of vortices is measured by the Strouhal number, defined as: 
 

U
df

St = ,             (26) 

 
where f is the detachment frequency of vortices. 

Table 1 shows the comparison between the numerical results obtained by the Lagrangian vortex method with the 
experimental ones obtained by Blevins (1984), with %10±  of uncertainties. The numerical force coefficients are 
computed between 25.40=it  and 49.30=ft  from Figure 2. 

It can be observed that the drag coefficient is greater than the experimental value, which is a characteristic of two-
dimensional simulations. The mean value of lift coefficient is not zero due to numerical errors. 
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Table 1. Isolated Circular Cylinder: Mean values of drag and lift coefficients and Strouhal number using LES model. 
 

5101.0×=Re  DC  LC  St  
Blevins (1984) 1.20 - 0.19 
Present Simulation 1.30 0.02 0.21 

 
Figure 3 shows the position of the wake vortices for isolated circular cylinder at the last step of the computation 

( 50.00=ft ); the formation and shedding of large eddies in the wake is presented in accordance to the physics involved 
in the viscous flow. The present numerical simulation runs ended with 300,000 discrete vortices. The final CPU time 
was about 216h when using a Intel(R) Core(TM)2 Quad CPU, without parallel computation. 

 

 
 

Figure 3. Position of the discrete vortices in the wake at 50.00=ft  for an isolated circular cylinder ( 5101.0×=Re ). 
 

4.2. Flow around a circular cylinder in moving ground effect 
 

The flow around a circular cylinder in ground effect presents several interesting characteristics, which can be 
described starting with the occurrence of the separation phenomenon. 

Bimbato et al. (2009) analyzed the aerodynamic loads behaviour of a circular cylinder for 5101.0×=Re placed near 
a ground running at the same speed as the incident flow. As explained before, the ground surface was fixed and its 
motion was simulated by the suppression of the vorticity generation on it, since there is no velocity gradient between 
the ground and the freestream. It is important to emphasize that the vorticity generation on the cylinder surface was not 
suppressed, since there is a velocity gradient between the body and the freestream; so, the no-slip condition was verified 
just on the cylinder surface, see Eq. (7). 

The numerical study reported in this paper is done to compare two distinct situations, defined as: 
 

Situation 1: The numerical implementation made by Bimbato et al. (2009) adding here LES model (referred as Case I 
on Table 2). 
 
Situation 2: A new Lagrangian vortex method implementation with LES model deal with moving boundary problem 
(referred as Case II on Table 2). 
 

In the second situation above, the ground is running at the same speed as the freestream in a manner that its position 
is recalculated every time step. In this situation, the ground travels at the same speed as the incident flow and the 
impermeability and the no-slip boundary conditions on the ground surface are imposed. A numerical model of a moving 
ground plane is represented by a source distribution on the 200 panels, each of it with constant strength per unit panel 
length. For the moving conditions are computed the new-coordinates of each panel and instantaneous distance ε off the 
ground surface where the new vortices are generated in each time step. 

Both situations are analyzed to conclude if the boundary layer developed on the ground is really negligible on this 
kind of ground effect problem, like Nishino (2007) says. 

In all numerical results presented in Tab. 2, the gap-ratio is fixed in 0.45=dh ; see Fig. 1. This gap ratio is chosen 
to allow the comparison between the present numerical results with that ones approximately two-dimensional obtained 
by Nishino (2007); see details about the choice of this gap ratio ( 0.45=dh ) in Bimbato (2008). 

The results obtained for the drag coefficient show an acceptable discrepancy compared with the experimental value, 
referred as Nishino (2007); in both numerical situations, the lift coefficient is positive, but show great discrepancy 
compared with the experimental value. Additional investigations are necessary and will be presented elsewhere. 
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Table 2. Mean values of drag and lift coefficients and Strouhal number of a circular cylinder in ground effect for 
0.45=dh at 5101.0×=Re . 

 
Authors 

DC  LC  St  
Nishino (2007) with end-plates 1.311 0.102 - 
Present result (Case I) 1.389 0.032 0.21 
Present result (Case II) 1.418 0.287 0.20 

 
Figure 4 shows the aerodynamic forces for both situations of 0.45=dh ; the force coefficients was averaged 

between 27.45=it  and 47.50=ft , after the numerical transient reached. 
 

  
(a) Case I (b) Case II 

 
Figure 4. Time evolution of the aerodynamic forces for a circular cylinder in ground effect ( 0.45=dh ; 5101.0×=Re ) 

 
Besides that the drag coefficient for the Case I is closer to the experimental value, one believes that the results 

referred in Tab. 2 as Case II is much more realistic. In fact, the analysis of the velocity field at an instant represented by 
point A (Fig. 5) shows that there is a boundary layer developed from the ground surface, when the ground effectively 
travels and vorticity is generated from the ground; see Fig. 5b. 

 

 

 

 
(a) Case I (b) Case II 

 
Figure 5. Near field velocity distribution at an instant represented by point A ( 0.45=dh ; 5101.0×=Re ). 

 
In the Fig. 5b is clearly shown that the occurrence of separation on the cylinder surface contributes for the 

development of a boundary layer on the moving ground. However, the gap ratio adopted ( 0.45=dh ) is not too small 
which causes a boundary layer not so thick; this fact turns the observations made by Nishino (2007) acceptable and, 
consequently, the results obtained by Bimbato (2008) and Bimbato et al. (2009) trusty. This is confirmed by the 
numerical values for both drag coefficients in Tab. 2: they are different in approximately 2%. 

In order to understand what happens in this more realistic situation, consider Fig. 4b. It can be noted that, differently 
from the isolated circular cylinder case, when the bluff body is placed near a moving ground the drag coefficient did not 
has a mean amplitude defined; see in Fig. 2. On the contrary, it can be seen alternate amplitudes, sometimes higher, 
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sometimes lower. The explanation for this fact is given by the first mechanism that governs the ground effect 
phenomenon: the blockage effect due to the ground plane (see Fig. 6). 

 
 
 

 
Figure 6. Near field velocity distribution (Case II; 0.45=dh ; 5101.0×=Re ) 

 
The vortex structure pointed with continuous line has freedom to grow up, which contributes for the greater 

amplitudes of the drag coefficient in Fig. 4b. On the other hand, the vortex structure pointed with trace line has its 
development limited by the presence of the ground plane, which does not permit that the drag coefficient reaches bigger 
values, like occurs with the vortex structure pointed with continuous line. Due to the events above described the drag 
coefficient fit in greater and smaller amplitudes (see again Fig. 4b). 

Finally, as one may observe in Fig. 7 the moving ground effect interferes effectively on the Von Kármán street 
formation. The present numerical simulation runs ended with 500,000 discrete vortices. The final CPU time was 628h 
17min when using a Intel(R) Core(TM)2 Quad CPU, without parallel computation. 

 

 
Figure 7. Position of the vortices in the wake at 50.00=ft  for a circular cylinder in moving ground (Case II; 

0.45=dh ; 5101.0×=Re ). 
 

Comparing Fig. 3 with Fig. 7 it is easy to see the change on the wake structure. In Fig. 3 the wake seems to be 
formed by a series of “mushroom” type of vortex structure; analyzing Fig. 7 it can be seen that the vortex sheet that 
connects two larger vortex structures turns so smaller than that one that connects the bigger structures in the isolated 
circular cylinder. This characteristic will be more intense as the body come close to the ground. 

 
5. CONCLUSIONS 
 

A comparative numerical study of vortex shedding from a circular cylinder near a ground plane is performed to 
evaluate two versions of moving ground implementation using Lagrangian vortex method with LES turbulence model: 
one that uses a fixed ground and generates vorticity only from the circular cylinder surface (named as Case I) and 
another that uses a ground running at the same speed as the incident flow; as consequence, vorticity generation is 
necessary from the cylinder and moving ground surfaces (named as Case II). Our main conclusion is that the boundary 
layer developed on a moving belt of a wind tunnel can not be neglected even if the moving belt has the same speed as 
the oncoming flow. Additional investigations are necessary to elucidate the boundary layer effect formed on the ground 
for smaller gap ratios ( dh ). However, small-gap regimes ( dh <0.35) are very difficult to investigate in a wind tunnel. 
The value for the drag coefficient predicted by the simulation using true moving ground effect (Case II) was, however, 
higher than numerical simulation using a fixed ground (Case I), and it needs further investigations. 

Our Lagrangian vortex method developed here will be improved including parallel computation and furthermore the 
three dimensional effects present in the experiments, which are very important for the Reynolds number used in the 
simulations. 

“Nowadays, applicability of the vortex element methods has been developed and improved dramatically, and it has 
become encouragingly clear that the vortex methods have so much interesting features that they provide researches and 
engineers with easy-to-handle and completely grid-free Lagrangian calculation of the unsteady and vortical flows 
without use of any RANS type turbulence models” (Kamemoto, 2009). 

Finally, due to its various particularities and countless applications it is necessary many studies about the ground 
effect phenomenon in order to understand it better, especially the influence of other gap ratios and the roughness effect, 
which may be an important practical parameter that must be take into account on automobile competitions. 
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