ANÁLISE NUMÉRICA DA TRANSFERÊNCIA DE CALOR EM CILINDROS DE COMPRESSORES ALTERNATIVOS DE REFRIGERAÇÃO

Fernanda Perazzolo Disconzi, <u>fernandad@polo.ufsc.br</u> Evandro L.L. Pereira, <u>evandro@polo.ufsc.br</u> Cesar J. Deschamps, <u>deschamps@polo.ufsc.br</u> POLO Laboratórios de Pesquisa em Refrigeração e Termofísica Universidade Federal de Santa Catarina 88040-900, Florianópolis, SC, Brasil

Resumo. A eficiência de compressores alternativos de refrigeração é afetada de forma significativa pelo fenômeno do superaquecimento, devido ao aquecimento do gás através do sistema de sucção e, posteriormente, em sua entrada no cilindro. Dentro deste contexto, o desenvolvimento de métodos de simulação para o processo de compressão na presença de transferência de calor é crucial para a otimização do desempenho de compressores. O presente estudo considera a modelação da transferência de calor em cilindros de compressores alternativos de refrigeração doméstica, durante o processo de sucção, em condições típicas de operação. O método dos volumes finitos foi utilizado para resolver numericamente o escoamento turbulento no interior do cilindro, com o emprego dos modelos de turbulência RNG k- ε e SST. Os resultados demonstram que o escoamento de alta velocidade que ocorre nos momentos iniciais da abertura da válvula de sucção produz taxas elevadas de transferência de calor no interior do cilindro.

1. INTRODUÇÃO

Uma análise do consumo de energia de compressores de refrigeração doméstica demonstra que a eficiência elétrica é de aproximadamente 88%, enquanto que a eficiência mecânica pode alcançar níveis de até 92%. A eficiência termodinâmica é a mais baixa e situa-se entre 80 e 83%. Estes números deixam claro que futuras melhorias na eficiência de compressores estarão provavelmente associadas a reduções das perdas termodinâmicas.

Conforme indicado por Ribas Jr. *et al.* (2008), grande parte das perdas termodinâmicas em compressores de refrigeração doméstica originam-se nos processos de sucção e descarga, devido a restrições ao escoamento. Por outro lado, praticamente metade das perdas decorre do superaquecimento do gás ao longo do sistema de sucção e no cilindro. Apesar da importância da última fonte de ineficiência, poucas investigações sobre superaquecimento estão documentadas na literatura. De fato, Shiva Prasad (1998) apresenta uma revisão de estudos na área e conclui que muito progresso é ainda necessário, através do desenvolvimento de métodos numéricos e experimentais, para que se alcance o entendimento adequado da transferência de calor em compressores.

Da mesma forma como ocorre no sistema de sucção, o superaquecimento que ocorre na entrada do gás na câmara de compressão (cilindro) reduz a eficiência volumétrica, uma vez que provoca a expansão do gás, diminuindo assim a massa no interior do cilindro ao final do processo de sucção e que será disponibilizada ao sistema. Além disto, o aquecimento do gás no cilindro aumenta o trabalho específico de compressão e a temperatura final da compressão. Isto causa uma elevação na temperatura das paredes do cilindro e outras partes do compressor, contribuindo para o superaquecimento até mesmo no sistema de sucção. De fato, as perdas por superaquecimento são afetadas por muitos fatores que interagem entre si de uma forma não trivial.

Annand e Ma (1970) caracterizaram experimentalmente o fluxo de calor instantâneo no interior da câmara de compressão de um motor de combustão interna. As medições da temperatura foram realizadas com termopares especialmente desenvolvidos para esta finalidade e o fluxo de calor foi calculado de forma indireta através dessas medições. O fluxo de calor foi dividido em uma componente estacionária, avaliada das medições de médias temporais da temperatura dentro da parede metálica, e em uma componente transiente, obtida das variações de temperatura na superfície interna. Os autores concluíram que não é adequado considerar a componente estacionária do fluxo de calor por meio de uma formulação unidimensional, pois existe uma variação significativa de temperatura ao longo da superfície. Os resultados demonstraram que a magnitude do fluxo de calor ao longo do ciclo depende fortemente da posição na parede. A partir dos dados experimentais, uma correlação foi proposta para o cálculo da transferência de calor instantânea na câmara de compressão, levando em conta as trocas de calor por convecção e por radiação.

Kornhauser e Smith (1989) analisaram a transferência de calor no interior de um tubo reto de diâmetro pequeno no qual foi induzido um escoamento oscilatório, observando que a transferência de calor pode ficar defasada em relação à diferença entre a temperatura média do fluido e a temperatura da parede. Assim, os autores propuseram uma descrição da transferência de calor através de um número de Nusselt complexo, no qual o fluxo de calor consiste de uma parcela proporcional à diferença de temperatura mais uma parcela proporcional à taxa de variação da diferença de temperatura. Resultados experimentais para fluxo de calor instantâneo e temperatura do gás em seis locais ao longo do tubo mostraram que o número de Nusselt complexo é adequado para descrever o fluxo de calor na parede.

Shiva Prasad (1992) afirma que o calor entregue ao gás na câmara de compressão é uma das principais contribuições para o superaquecimento em compressores alternativos. O autor obteve experimentalmente a taxa de transferência de

calor das paredes do cilindro. Através dos dados experimentais, observou uma não uniformidade espacial nas temperaturas e nas taxas de transferência de calor. Particularmente, verificou uma baixa transferência de calor da parede para o gás perto da válvula de sucção, enquanto que esta transferência é bem mais significativa na região próxima à válvula de descarga, justificando que isso é coerente pelo fato de que a temperatura da parede é consideravelmente maior perto da válvula de descarga quando comparada àquela próxima da válvula de sucção. Finalmente, o autor constatou um atraso entre o fluxo de calor e a diferença de temperatura entre o gás e a parede nos processos de expansão e de sucção.

Pereira *et al.* (2009) investigaram numericamente a transferência de calor no interior de cilindros de compressores alternativos de pequena capacidade, incluindo o escoamento turbulento através das válvulas de sucção e de descarga. Na solução numérica empregaram funções parede para evitar a solução do escoamento na subcamada limite viscosa e, assim, reduzir o custo de processamento computacional. Por outro lado, a dinâmica das válvulas foi descrita através de um modelo com um grau de liberdade. Resultados foram obtidos para condições de operação típicas de compressores e comparados com correlações propostas na literatura. Os autores constataram que o fluxo de calor durante o processo de descarga é maior do que no processo de sucção, devido aos maiores níveis de velocidade do escoamento nesse processo.

O presente artigo considera a análise da transferência de calor em cilindros de compressores alternativos de refrigeração durante o processo de sucção. O escoamento turbulento no interior do cilindro foi resolvido com o emprego das versões dos modelos de turbulência RNG k-ε (Orszag *et al.*, 1993) e SST (Menter, 1994) disponíveis no código Fluent (ANSYS, 2008).

2. PROCEDIMENTO DE SOLUÇÃO NUMÉRICA

2.1 Modelação da turbulência

O modelo de turbulência RNG k- ε apresenta constantes diferentes e termos adicionais nas equações de transporte para $k \in \varepsilon$, quando comparado ao modelo k- ε padrão. Em particular, um termo adicional na equação de ε melhora significativamente a acurácia da previsão em escoamentos com taxas de deformação elevadas. O modelo RNG k- ε incorpora também uma expressão analítica para o número de Prandtl turbulento, além de fornecer uma expressão diferencial para viscosidade efetiva $\mu_{ef}(= \mu + \mu_t)$ que pode ser usada em regiões com baixos números de Reynolds.

Para o tratamento da região da parede, utilizou-se neste trabalho um procedimento que combina o procedimento de duas camadas e uma função-parede aprimorada. A abordagem de duas camadas é usada para especificar a dissipação ε e a viscosidade turbulenta (μ_t) nos volumes adjacentes à parede. Neste tipo de abordagem, o volume é dividido em uma região afetada pela viscosidade e outra região totalmente turbulenta. A demarcação destas duas regiões é determinada através do número de Reynolds turbulento:

$$Re_{y} \equiv \frac{\rho y \sqrt{k}}{\mu} \tag{1}$$

onde y é a distância normal à parede, enquanto ρ e μ são, respectivamente, a densidade e a viscosidade do fluido.

A fim de modelar a turbulência junto à parede seguindo o conceito de duas camadas, emprega-se o modelo RNG k- ε na região totalmente turbulenta ($Re_y > Re_y^*$; $Re_y^* = 200$) e na região mais próxima à parede adota-se o modelo a uma equação de Wolfshtein (1969), no qual a viscosidade turbulenta, μ_t , é calculada por meio de uma escala de velocidade $k^{1/2}$ e uma escala de comprimento, l_{μ} :

$$\mu_{t,1} = \rho C_{\mu} l_{\mu} \sqrt{k} \qquad ; \qquad l_{\mu} = y C_{l}^{*} \left(1 - e^{-Re_{y}/A_{\mu}} \right)$$
(2)

sendo, $C_l^* = \kappa C_{\mu}^{-3/4}$, $C_{\mu} = 0,0845$, $A_{\mu} = 70 \text{ e} \kappa$ (= 0,4187) é a constante de Von Kármán.

Para o tratamento de duas camadas, a viscosidade turbulenta é obtida de uma relação que combina os valores correspondentes do modelo a uma equação, $\mu_{t,1}$, e do modelo RNG k- ε , $\mu_{t,2} = \rho C_{\mu} k^2 / \varepsilon$:

$$\mu_t = \lambda_{\varepsilon} \mu_{t,2} + (1 - \lambda_{\varepsilon}) \mu_{t,1} \tag{3}$$

A função λ_{ε} é definida de forma a ser igual à unidade longe das paredes e zero no caso contrário:

$$\lambda_{\varepsilon} = \frac{1}{2} \left[1 + \tanh\left(\frac{Re_y - Re_y^*}{A}\right) \right] \tag{4}$$

Na expressão acima, a constante $A = |\Delta R e_y| / \tan^{-1}(0.98)$ determina a amplitude de λ_{ε} . O objetivo principal de λ_{ε} é evitar que a convergência do procedimento iterativo de solução seja impedida quando o valor de μ_t obtido na camada externa não condiz com o valor de μ_t dado pelo modelo de Wolfshtein no limite da região afetada pela viscosidade.

O valor de ε na região em que $Re_y < Re_y^*$ é calculado das escalas de velocidade $(k^{1/2})$ e de comprimento (l_{ε}) :

$$\varepsilon = \frac{k^{\frac{3}{2}}}{l_{\varepsilon}} \quad ; \quad l_{\varepsilon} = yC_l^* \left(1 - e^{-\frac{Re_y}{A_{\varepsilon}}}\right) \quad ; \quad A_{\varepsilon} = 2C_l^* \tag{5}$$

No modelo a uma equação, aplicado junto às paredes, as equações da quantidade de movimento e a equação para a energia cinética turbulenta permanecem as mesmas do modelo RNG k- ε . A equação de *k* é resolvida em todo o domínio incluindo as células adjacentes à parede. A condição de contorno para *k* na parede é $\partial k/\partial n = 0$, onde *n* é a direção normal à parede. A taxa de dissipação da energia cinética turbulenta e a produção, $\varepsilon \in G_k$, nas células adjacentes à parede são termos fontes na equação de *k* e avaliadas, respectivamente, da Eq. (5) e por:

$$G_k \approx \tau_{\rm w} \frac{\partial U}{\partial y}$$
 (6)

O gradiente de velocidade na expressão acima é calculado da seguinte expressão adimensional:

$$\frac{du^{+}}{dy^{+}} = e^{\Gamma} \frac{du^{+}_{vl}}{dy^{+}} + e^{\frac{1}{\Gamma}} \frac{du^{+}_{tl}}{dy^{+}}$$
(7)

em que a velocidade adimensional $u^+(=u/u^*)$ é definida com referência à velocidade de fricção u^* .

A função Γ sugerida por Kader (1979),

$$\Gamma = -\frac{a(y^{+})^{4}}{1 + by^{+}}; \quad a = 0.01; \quad b = 5$$
(8)

estabelece o valor da propriedade em análise, através das leis da subcamada limite viscosa e da região logarítmica. A condição local do escoamento turbulento é caracterizada pela forma usual com o parâmetro y^+ (= u^*y/v).

Este tipo de abordagem permite também que a lei para a região totalmente turbulenta seja facilmente modificada para considerar outros efeitos, tais como gradientes de pressão. Além disto, a expressão (7) também garante um comportamento assintótico correto para valores pequenos e elevados de y^+ , bem como uma representação razoável dos perfis de velocidade nos casos em que y^+ se situa na região amortecida (5 < y^+ < 30). Assim, a lei da parede para escoamentos turbulentos compressíveis com transferência de calor e gradientes de pressão é representada pela seguinte expressão:

$$\frac{du_{tl}^{+}}{dy^{+}} = \frac{1}{\kappa y^{+}} [S'(1 - \beta u^{+} - \gamma (u^{+})^{2})]^{1/2}$$
(9)

onde $S' = 1 + \alpha y^+$ se $y^+ < y_s^+$ e $S' = 1 + \alpha y_s^+$ se $y^+ \ge y_s^+$. Além disto,

$$\alpha = \frac{\mu}{\rho^2 (u^*)^3} \frac{dp}{dx} \quad ; \quad \beta = \frac{\sigma_t q_w}{\rho c_p T_w u^*} \quad ; \quad \gamma = \frac{\sigma_t (u^*)^2}{2c_p T_w} \tag{10}$$

O parâmetro y_s^+ denota a posição a partir da qual a lei logarítmica é assumida. O coeficiente α representa a influência dos gradientes de pressão e os coeficientes $\beta \in \gamma$ representam os efeitos térmicos. Finalmente, T_w é a temperatura da parede, q_w é o fluxo de calor pela parede e c_p é o calor específico à pressão constante. A Eq. (9) é uma equação diferencial ordinária que pode ser resolvida, por um método numérico ou analítico, para a obtenção de u_{tl}^+ .

Para a subcamada limite viscosa, a lei de parede é:

$$\frac{du_{vl}^+}{dy^+} = 1 + \alpha y^+ \tag{11}$$

e quando integrada, fornece:

$$u_{vl}^{+} = y^{+} \left(1 + \frac{\alpha}{2} y^{+} \right)$$
(12)

A Equação (11) inclui somentes efeito de gradientes de pressão, enquanto os efeitos de propriedades variáveis devido a transferência de calor e compressibilidade são desprezados, pois são considerados ser de menor importância quando ocorrem junto à parede.

As funções-parede para o perfil de temperatura também seguem uma ponderação entre os perfis para a subcamada limite viscosa e para a região logarítmica:

$$T^{+} \equiv \frac{(T_{w} - T_{P})\rho c_{p} u_{T}}{q_{w}} = e^{\Gamma} T_{vl}^{+} + e^{\frac{1}{\Gamma}} T_{tl}^{+}$$
(13)

sendo T_P a temperatura do volume adjacente à parede e Γ a função de ponderação, escrita como:

$$\Gamma = -\frac{a(Pr \, y^+)^4}{1 + b \, Pr^3 y^+} \tag{14}$$

Na expressão acima, *Pr* denota o número de Prandtl molecular. As funções-parede para a subcamada limite viscosa e para a região logarítmica usadas na solução da equação da energia são:

$$T_{vl}^{+} = Pr\left(u_{vl}^{+} + \frac{\rho u^{*}}{2q_{w}}u^{2}\right)$$
(15)

$$T_{tl}^{+} = Pr_t \left\{ u_{tl}^{+} + P + \frac{\rho u^*}{2q_w} \left[u^2 - \left(\frac{Pr}{Pr_t} - 1\right) (u_c^{+})^2 (u^*)^2 \right] \right\}$$
(16)

em que,

$$P = 9,24 \left[\left(\frac{Pr}{Pr_t} \right)^{3/4} - 1 \right] \left[1 + 0,28e^{-0,007Pr/Pr_t} \right]$$
(17)

O parâmetro u_c^+ representa o valor de u^+ na intersecção dos perfis de velocidade da subcamada limite viscosa com variação linear e da região completamente turbulenta com variação logarítmica.

O tratamento exposto acima amplia a validade da modelagem de escoamentos turbulentos junto a paredes, mas é recomendável que seja construída uma malha suficientemente refinada para resolver a região afetada pela difusão molecular. Para isto, o valor de y^+ na célula adjacente à parede deveria ser da ordem de 1, embora valores no intervalo $(y^+ < 5)$, ainda situados dentro da subcamada viscosa, sejam aceitáveis.

No modelo SST (Menter, 1994), combina-se o modelo k- ω na regão próxima à parede com o modelo k - ε para a região afastada, empregando-se para isto uma função F_1 para fazer a transição entre os dois modelos. As condições de contorno de parede para a equação de k no modelo SST são tratadas da mesma forma como realizado para o modelo RNG k- ε . Assim, todas as condições de contorno para malhas não-refinadas irão corresponder a abordagem de função-parede, representadas pelas Eqs. (7) a (17), enquanto que para malhas refinadas, a condição de contorno para baixo número de Reynolds, conforme estabelece as Eqs. (1) a (6).

O valor de ω na subcamada limite viscosa é especificado como:

$$\omega = \frac{\rho(u^*)^2}{\mu} \left[\min\left(\omega_{w'}^+, \frac{6}{\beta_i(y^*)^2}\right) \right]$$
(18)

com

$$\beta_i = F_1 \beta_{i,1} + (1 - F_1) \beta_{i,2} \quad ; \quad \beta_{i,1} = 0,075 \quad ; \quad \beta_{i,2} = 0,0828 \quad ; \quad \omega_w^+ = 2500 \text{ (paredes lisas)} \tag{19}$$

Na região logarítmica, o valor de ω é:

$$\omega = \frac{u^*}{\sqrt{\beta_{\infty}^* \kappa y}} \tag{20}$$

sendo $\beta_{\infty}^* = 0,09$.

2.2 Metodologia numérica

O domínio da solução incluiu a geometria da câmara de compressão que é formada pelo cilindro, pistão, placa de válvulas e válvula de sucção. A utilização de uma geometria axissimétrica permitiu a simplificação do problema, mas sem prejudicar a descrição dos principais fenômenos físicos de interesse do estudo. A Figura 1 mostra um esquema do domínio da solução para a simulação do processo de sucção.

Figura 1. Domínio de solução.

Figura 2. Malha computacional.

O modelo de simulação foi desenvolvido com o código comercial Fluent (ANSYS, 2008). Na simulação numérica do escoamento foi utilizado o algoritmo segregado, no qual as equações governantes são resolvidas sequencialmente. Embora o algoritmo segregado seja eficiente em termos do uso de memória, a taxa de convergência do procedimento iterativo é relativamente lenta. Por esta razão, o acoplamento entre os campos numéricos de pressão e de velocidade foi realizado através do esquema PISO, a fim de reduzir o número de iterações necessárias para a convergência, considerando a natureza transiente do problema do presente caso. Adotou-se o esquema de interpolação de segunda ordem para avaliar o transporte advectivo nas faces dos volumes. Por razões de estabilidade numérica, escolheu-se o esquema de interpolação *Power-Law* para as quantidades turbulentas. Devido à presença de fronteiras móveis, tais como o pistão e a válvula de sucção, uma estratégia para adaptar a malha de acordo com a variação temporal do ângulo de manivela foi requerida também na simulação.

Os erros de truncamento na solução numérica foram avaliados através de testes com quatro refinos de malha e empregando-se elementos quadrangulares. A Tabela 1 apresenta os valores correspondentes de y^* , altura mínima e máxima dos elementos junto às paredes do domínio, razão de crescimento da malha e o número mínimo e máximo de células para cada nível de refinamento. A Figura 2 ilustra a malha computacional adotada para a simulação do processo de sucção. Para assegurar a estabilidade numérica do procedimento iterativo e também devido a restrições associadas com a adaptação da malha devido aos movimentos do pistão e da válvula, o avanço de tempo foi restringido a um pequeno incremento de ângulo de manivela, igual a $0,1^\circ$.

	Malha 01	Malha 02	Malha 03	Malha 04
<i>Y</i> ⁺	5,0	4,0	1,6	0,9
Δy_{minimo} (mm)	0,05	0,025	0,0125	0,00625
Δy_{maximo} (mm)	0,4	0,2	0,2	0,2
Razão de crescimento	1,1	1,1	1,1	1,1
Número de células mínimo	3800	8500	12600	18500
Número de células máximo	6000	14000	20000	30000

Tabela 1. Características dimensionais das malhas.

A simulação do processo de sucção é iniciada no ponto morto superior (180°) e os valores iniciais de temperatura e pressão dentro do cilindro são tomados de resultados obtidos da simulação do processo de descarga, cujos detalhes não serão apresentados aqui. Para as condições de contorno na entrada, definiram-se parâmetros de intensidade turbulenta de 5%, escala de comprimento da turbulência igual ao diâmetro hidráulico da câmara de sucção, pressão igual à pressão de evaporação e temperatura de 57°C. Nas paredes sólidas as condições de não escorregamento e de superfície impermeável foram adotadas para as componentes de velocidade. Para a equação da energia, assumiu-se parede adiabática para as paredes da câmara de sucção e do tubo de sucção e parede isotérmica com temperatura igual a 87°C para as paredes do cilindro, placa de válvulas, pistão e válvula. As dimensões da geometria simulada e as características de operação do compressor foram mantidas constantes em todas as simulações e encontram-se na Tabela 2.

Diâmetro do pistão:	20 mm
Curso do pistão:	10 mm
Comprimento da biela:	45,44 mm
Diâmetro do orifício de sucção:	7 mm
Diâmetro da válvula de sucção:	9 mm
Ângulo de abertura da válvula:	234,8 °

Tabela 2. Din	nensões da geo	metria e carac	terísticas de c	operação do	compressor.
	U			1 2	1

Ângulo de fechamento da válvula:	376,4 °
Temperatura de evaporação:	- 23,3°C
Pressão de evaporação:	0,115 MPa
Temperatura de condensação:	54,4 °C
Pressão de condensação:	1,355 MPa
Rotação:	3000 rpm

3. RESULTADOS E DISCUSSÕES

Foram realizados diversos testes com refinos de malha e com modelos de turbulência, comparando-se resultados para o fluxo de calor médio nas superfícies que delimitam a câmara de compressão (cilindro, pistão e placa de válvulas), durante o período equivalente ao deslocamento do pistão do ponto morto superior até o ponto morto inferior. No decorrer da simulação, o fluxo de calor nas superfícies, a vazão mássica no orifício de sucção, bem como a temperatura e a pressão na câmara de compressão foram monitorados.

A Figura 3 mostra resultados para o fluxo de calor instantâneo nas paredes da câmara de compressão (cilindro, pistão e placa de válvulas) em função do ângulo de manivela (ω t), obtidos com os modelos de turbulência RNG k- ϵ e SST em diferentes níveis de refino de malha. As linhas verticais tracejadas indicam os instantes de abertura (ω t = 234,8°) e de fechamento (ω t = 376,4°) da válvula. Observa-se que os resultados do modelo SST possuem maior dependência do refino de malha, mas as previsões para o fluxo de calor dos dois modelos são bastante próximas quando se adotam as malhas mais refinadas (malha 03 e malha 04). Em função de sua menor sensibilidade ao refino de malha, o modelo RNG k- ϵ foi empregado, em conjunto com a malha 04, para a geração dos resultados de transferência de calor, campos de temperatura e velocidade, níveis de intensidade turbulenta e valores de y⁺, necessários para a presente análise.

Figura 3. Fluxo de calor total no cilindro. (a) Modelo RNG k-ɛ. (b) Modelo SST.

Para uma compreensão inicial do problema em estudo, a Fig. 4 apresenta vetores velocidade sobrepostos ao campo de temperatura no interior da câmara de compressão, enquanto que a Fig. 5 mostra o campo da intensidade turbulenta $I[=(2k/3)^{1/2}/V_r]$, em dois instantes de tempo distintos: logo após a abertura da válvula em que o fluxo de calor é máximo ($\omega t = 247^{\circ}$) e em um instante intermediário entre a abertura e o fechamento da válvula ($\omega t = 314^{\circ}$). Na avaliação da intensidade turbulenta, adotou-se a velocidade de referência $V_r = 50$ m/s.

Observa-se que ao entrar na câmara de compressão, o gás escoa inicialmente ao longo da placa de válvulas e depois sobre a lateral do cilindro e, finalmente, alcança a superfície do pistão com velocidade menor e temperatura maior do que na região de entrada. Isto faz com que a transferência de calor sobre a superfície do pistão seja menor do que nas superfícies da placa de válvula e do cilindro. Como esperado, a intensidade turbulenta (*I*) é mais elevada na região de entrada do cilindro, onde os níveis de velocidade e de taxa de deformação do escoamento são maiores.

A Figura 6(a) apresenta resultados numéricos para o deslocamento da válvula de sucção e a vazão mássica, em função do ângulo de manivela. Fica evidente que à medida que a válvula de sucção vai se abrindo, a vazão de gás na entrada do cilindro aumenta. Conforme pode ser visto na Fig. 6(b), o aumento da vazão logo após a abertura da válvula

de sucção provoca um valor máximo de fluxo de calor, devido à alta velocidade do escoamento. De fato, este aumento da transferência de calor se deve ao aumento do coeficiente de transferência de calor junto às paredes do cilindro, de acordo com a Fig. 7(b). O valor do fluxo de calor total é uma média dos fluxos de calor em cada superfície (placa de válvulas, pistão e lateral do cilindro), ponderadas por suas respectivas áreas.

Os valores de y^+ junto às paredes do cilindro, da placa de válvulas e do pistão podem ser vistos na Fig. 7(a). A variação dos valores de y^+ ao longo do ciclo de compressão está relacionada ao próprio fluxo de calor na parede, pois y^+ está associada à tensão na parede e, consequentemente, à velocidade junto à parede. Desta forma, à medida que a velocidade do escoamento aumenta junto à parede, espera-se um aumento tanto no fluxo de calor como na tensão na parede, relacionada com y^+ .

Na Figura 8, compara-se o resultado para o fluxo de calor total obtido neste estudo com os valores fornecidos por correlações disponíveis na literatura e que são empregadas comumente em compressores alternativos. As correlações empregadas (Annand, 1963) podem ser expressas em função do número de Reynolds na forma $Nu = ARe^b$ (onde A = b = 0,7 são constantes determinadas experimentalmente) ou do número de Peclet (Pe = RePr). Além disto, inclui-se na comparação o resultado numérico de Pereira *et al.* (2009), obtido com funções-parede para evitar a solução da subcamada limite viscosa junto à parede. Através da comparação, pode-se observar que a correlação de Annand (1963) baseada no número de Reynolds prevê maior fluxo de calor quando comparada a previsão obtida pela correlação baseada no número de Peclet, porém, ambas prevêem uma transferência de calor bastante inferior ao obtido neste estudo. Por outro lado, o resultado de Pereira *et al.* (2009) é similar às previsões numéricas deste estudo e as diferenças observadas podem ser creditadas ao tratamento de parede diferente adotado em ambas as análises. Para melhorar as correlações de transferência de calor dever-se-ia considerar o fluxo de massa, pois é durante o período entre abertura e fechamento da válvula de sucção que se verifica maior diferença.

Deve ser mencionado que a correlação desenvolvida por Annand (1963) baseia-se em dados obtidos para transferência de calor no interior do cilindro de um motor de combustão interna. Assim, considerando as diferenças existentes entre as geometrias de válvulas de compressores e de motores de combustão interna, não é uma surpresa a diferença observada entre esses dados e os resultados numéricos do presente estudo, principalmente nos instantes subseqüentes à abertura da válvula de sucção.

Figura 4. Vetores velocidade e campo de temperatura para (a) $\omega t = 247^{\circ}$ e (b) $\omega t = 314^{\circ}$.

60 65 70 75 80

 (\mathbf{h})

85

Figura 5. Campo de intensidade turbulenta para (a) $\omega t = 247^{\circ} e$ (b) $\omega t = 314^{\circ}$.

Figura 6. (a) Deslocamento da válvula e vazão mássica, em função do ângulo de manivela e (b) Fluxo de calor.

Figura 7. Resultados numéricos para (a) valores de y⁺ junto às paredes da câmara de compressão e (b) coeficiente de transferência de calor nas superfícies da câmara de compressão, em função do ângulo de manivela.

Figura 8. Comparações entre fluxos de calor obtidos no presente estudo com correlações e previsão numérica.

4. CONCLUSÕES

Um modelo numérico foi desenvolvido para prever a transferência de calor no interior de cilindros de compressores alternativos de refrigeração doméstica durante o processo de sucção. O escoamento turbulento foi resolvido com o emprego de versões dos modelos de turbulência RNG k- ϵ e SST para baixos números de Reynolds. Verificou-se que o modelo RNG k- ϵ é menos sensível ao refino de malha, podendo ser vantajoso em simulações de geometrias tridimensionais. Nos momentos iniciais da abertura da válvula de sucção, o escoamento apresenta níveis elevados de velocidade e turbulência, originando taxas elevadas de transferência de calor no interior do cilindro. Os resultados numéricos para fluxo de calor foram comparados com valores obtidos de correlações disponíveis na literatura e com o resultado de um estudo anterior, mostrando que correlações comumente usadas pela indústria prevêem taxas de transferência de calor bem menores do que aquelas obtidos neste estudo e no trabalho de Pereira *et al.* (2009), pois tais correlações não consideram os processos de sucção e descarga.

5. AGRADECIMENTOS

Os autores agradecem o apoio fornecido ao presente estudo por EMBRACO, CNPq (Institutos Nacionais de Ciência e Tecnologia; Processo 573581/2008-8) e FINEP.

6. REFERÊNCIAS

- Annand, W. D., Ma, T. H., "Instantaneous heat transfer rates to the cylinder head surface of a small compressionignition engine". Proceedings Institution of Mechanical Engineers, vol. 185, p.976-987, 1970.
- Annand, W. D., "Heat transfer in the cylinders of reciprocating internal combustion engines". Proceedings Institution of Mechanical Engineers, vol. 117, p. 973-996, 1963.
- ANSYS Inc., 2008, Fluent v.12.0.7.
- Kader, B., "Temperature and Concentration Profiles in Fully Turbulent Boundary Layers". Int. J. Heat Mass Transfer, 24(9):1541–1544, October 1979.
- Kornhauser, A. A., Smith Jr., J. L., "Heat transfer with oscillating pressure and oscillating flow". Proc. IEEE, p. 2347-2353, 1989.
- Menter, F. R., "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications". AIAA Journal, 32(8):1598–1605, August 1994.
- Orszag S.A., V. Yakhot, W.S. Flannery, F. Boysan, D. Choudhury, J. Maruzewski, and B. Patel, "Renormalization Group Modeling and Turbulence Simulations". In International Conference on Near-Wall Turbulent Flows, Tempe, Arizona, 1993.
- Pereira, E. L. L., Deschamps, C. J. and Ribas, F. A., "Numerical prediction of heat transfer inside the cylinder of a reciprocating compressor", International Conference on Compressors and Coolants, Papiernička, October 2009.
- Ribas Jr., F. A., Deschamps, C. J., Fagotti, F.; Morriesen, A. and Dutra, T., "Thermal analysis of reciprocating compressors – A critical review". In: Proceedings of the Int. Compressor Eng. Conf. at Purdue. 2008, Purdue, 2008. Proceedings. Purdue: University Press, 2008.
- Shiva Prasad, B. G., "Regenerative heat transfer in reciprocating compressors". Paper based on original version presented at the 1992 PCRC.
- Wolfshtein, M., "The Velocity and Temperature Distribution of One-Dimensional Flow with Turbulence Augmentation and Pressure Gradient". Int. J. Heat Mass Transfer, 12:301–318, 1969.

7. NOTA DE RESPONSABILIDADE

Os autores são os únicos responsáveis pelo material impresso incluído neste trabalho.