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Abstract. This work purpose to provide a numerical estimate of fluid-elastic forces of a mobile tube under 2D transverse
fluid flow. At first, we carried out a numerical validation on vortex wake characteristic behind a tube isolated rigid 2D
with Re = 200: Strouhal number Sh and coefficients of lift CL and drag CD. These values will be useful for following
simulations. Finally, a harmonic movement perpendicular to flow is imposed on the tube, having a frequency ratio fo/fk
and a reduced amplitude So/D. We compare this results to Meneghini (1993) comparing to the temporal force signals by
report to displacement, and drag and lift forces by report to frequency ratio. The test parameters of vibrating tube with
Re = 200 are the frequency ratios fo/fk ∈ [0.85− 1.20] and the reduced amplitudes of So/D = 0.015.
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1. INTRODUCTION

Many industrial components are made of a variety of tubes which vibrate under flow fluid. The analysis of fluid-elastic
forces under small amplitudes of vibration is an research field which interest the thermonuclear area. Unfortunately, this
kind of problem is rarely analyzed by literature. For example, ALE method is example of numerical formulation to de-
scribe fluid-structure problems. The ALE method describe dynamic meshes around structures to treat vibratory problems
under fluid flow. However, the ALE performance for determining fluid-elastic forces to small vibrations amplitudes is
still ignored.

An alternative method is consider a indeformable mesh attached to a mobile structure. This approach is known as
Accelerate Reference Frame (ARF), Figure 1. The ARF method is applied to study structures vibrations of indeformable
and isolates bodies under open fluid flow (Blackburn and Karniadakis, 1993; Blackburn and Henderson, 1996; Blackburn
et al., 2001). Li et al. (2002) improve this this technique adding a rotation movement to the translations degree of freedom.
And, with coordinator mapping, Newman and Karniadakis (1997) generalise to the case of structure displacement varies
tridimensionally.

A circular cylinder at forced movement under uniforme fluid flow is cinematic equivalent to a fix cylinder under a
oscillatory transversal flow superposed to a uniforme flow (Meneghini, 1993). This different fluid flow different dynam-
ically in raison of the Froude-Krylov force that result an inertia force. And, by report to the movement of non-inertial
frame reference, the calculate forces may be corrected to ’prendre en compte’ inertial effects.

In this paper, we present a numerical example of this non-inertial referential. This work purpose to provide a numerical
estimate of fluid-elastic forces of a mobile tube under 2D transverse fluid flow. We carried out a imposed harmonic
movement on the tube perpendicular to flow, having a frequency ratio fo/fk ∈ [0.85 − 1.20] and a reduced amplitude
So/D = 0.05. We compare ARF to Meneghini’s thesis (Meneghini, 1993) comparing to the temporal force signals by
report to displacement, and drag and lift forces by report to frequency ratio. The test parameters of vibrating tube with
Re = 200 are the frequency ratios fo/fk ∈ [0.80− 1.20] and the reduced amplitudes of So/D = 0.015.

Simulations were compared with Meneguini’s experimental results (Meneghini, 1993). This methods are implemented
in CAST3Ma numerical platform of French Nuclear Agency CEA/Saclay.
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Figure 1. Scheme show the principal of the ARFmethod. The fluid flow is resolved by report to a non-inertial frame
x′y′ fixed to structure. The mesh is indeformable and displace with cylinder. And, the mesh displacement is coupled to

movement-dependent forces by report to global frame XY where fluid flow U∞ is described.

2. ARF METHOD APPLIED TO FLUID-STRUCTURE PROBLEMS

A slender 2D structure is characterized by a linear mass Ms, a natural frequency fs[Hz] and a reduced damping ξs.
Into a inertial coordinate system, the structure mouvement’s response due to a distributed fluid force Ff is described as,

s̈ + 2ξsωs ṡ + ω2
s s = Ff/Ms (1)

The correspondent Navier-Stokes equations in a related reference attached to cylinder,
∇ · u = 0

Du
Dt

+ u · ∇u = −1
ρ
∇p + b + ν∆u − s̈

(2)

Then, the Dirichlet-Newmann coupling process make use of the variables acceleration s̈ and fluid force Ff into Equations
(2) and (1) respectively,

F ξ =
∫

Γ(t)

(−p n + ν[∇u +∇Tu] · n) dΓ (3)

The transversal flow over vibrating cylinder in forced movement is cinematic equivalent to a fluid flow around a fixed
cylinder superposed to a transversal oscillatory flow, Figure 2. Both configuration are dynamically different en raison of
Froude-Krylov force resultant of inertial effects due to control volume acceleration Fox and McDonald (1985); Meneghini
(1993).
Then, by report to oscillatory direction, it’s necessary to make a correction of the fluid-elastic force obtained by,

Ff = F ξ + (ρπD2/4) · s̈cyl (4)

where, Ff is the fluid-elastic force applied around to cylinder relatif to inertial frame; F ξ correspond to the fluid-elastic
force relatif to a reference frame fixed to the cylinder, and s̈cyl is the cylinder acceleration. Consequently, the force
coefficient in oscillatory direction ey (Lift coefficient) is written as,

CL = CL,ξ + (πD/2U2) · s̈cyl (5)

where, CL,ξ is the lift coefficient relatif to a reference frame fixed to the cylinder, and CL is the inertial lift coefficient.

3. NUMERICAL EXAMPLE

To validate this application of ARFmethod, we simulate a mobile cylinder under uniforme fluid flow. This cylinder
have a forced vibration around Strouhal (Sh ∼ 0.2). Meneghini (1993) analyze this case. This case has Reynolds number
Re = 200 and dimensional amplitude So/D = 0.015 with a unitary cylinder diameter D. To simulate this case, the fluid
domain are Lx × Ly = 35D × 10D with 25D downstream.

This simulations use quadratic finite elements Q2+BUBLE, and mesh size and time-step determination is done by
numerical criteria (de Morais, 2008).
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Uo
s = So sin(2ππππ·ffst)

Uo

ds/dt = 2ππππ·ffs So cos(2ππππ·ffst)

Figure 2. Cinematic equivalence of a oscillatory cylinder under permanent flow.

Spatial and temporal criteria The spatial criteria adopted establishNδ = 160 elements around cylinder. If we consider
a square elements, this spatial criteria correspond to two elements into boundary layer, Nδ ≥ C ·2π

√
Re. The correspond

mesh have 17600 elements and 71040 nodes, Figure 3.
CFL criteria determine the time step ∆t = 0.0023, 15 times smaller than ∆t ≥ ∆x/U∞ = 0.035 (de Morais, 2008).

Figure 3. Fluid mesh around mobile cylinder.

Numerical forces time history Figure 4 present the fluid forces evolution for different frequencies ratio fo/fSh. We
observe the lock-in phenomena on the range fo/fk ∈ [0.85 − 1.10]. This moment correspond to the limits of zone 2S
with detachment of isolated vortex at maximal velocity. At this level of reduced amplitude So/D = 0.15, Meneghini
(Williamson and Govardhan, 2004; Meneghini, 1993) establish the synchronization limit between fo/fk ∈ [0.950−1.17]
approximately. The numerical data are very close to experimental results, fo/fk ∈ [0.95 − 1.10] (Williamson and
Govardhan, 2004). It’s necessary step reduced frequency more precise to have a fine description of the lock-in transition
at zone 2S.

Figure 5 present the phase between displacement s and lift coefficient 2F f,L(t)/ρDU2 around Kármán vortex street
obtained by inter-spectre SF f,L s . We compare numerical results using diagonal mass (EFM1) and consistent mass(EF)
with Meneghini’s data.

Mean drag coefficient 2F f,D/ρDU2 and fluctuant lift coefficient 2F ′

f,L/ρDU
2 as function of frequencies ratio fo/fk

are show in Figures 6(a) and 6(b). We observe a good accord with numerical results and literature.
The numerical phase results in diagonalize mass EFM1 and consistence mass EF matrix don’t present great differences.

To obtain precise numerical simulation using CAST3M, we advise the use of consistence mass matrix. The mean drag
and fluctuant lift can represent precisely the "lock-in" phenomena.
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(a) fo/fSh = 0.80
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(b) fo/fSh = 0.85
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(c) fo/fSh = 0.90
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(d) fo/fSh = 0.95
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(e) fo/fSh = 1.00
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(f) fo/fSh = 1.05
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(g) fo/fSh = 1.10
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(h) fo/fSh = 1.15

Figure 4. Temporal displacement evolution s(t)/D, and drag 2F f,D(t)/ρDU2 and lift fluid forces 2F f,L(t)/ρDU2.
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Figure 5. Displacement-lift phase versus fo/fk to So/D = 0.15.
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Figure 6. 2F f,D/ρDU2 et 2F ′
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2 versus fo/fk pour So/D = 0.15.
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4. CONCLUSIONS

We present a numerical example of using non-inertial referential technical ARF to provide a estimation of fluid-elastic
forces of a mobile cylinder under 2D transverse fluid flow. We carried out a imposed harmonic movement on the tube
perpendicular to flow, having a frequency ratio fo/fk ∈ [0.85− 1.20] and a reduced amplitude So/D = 0.15.

This numerical example is necessary to validate this implementation and to compare fluid-elastic results with others
methods, like ALE and TRANSPIRATION.
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