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Abstract. An inverse problem is solved for the estimation of upstream velocity pro¯les in an incompressible turbulent

boundary layer over a smooth °at plate. The procedure is based on the boundary layer morphology, making use of the

law of the wall and the law of the wake to estimate boundary layer parameters from measured velocity histories. The

paper also presents a direct problem approach for the solution of the turbulent boundary layer equations. The direct

approach resorts to a ¯nite di®erence method and to the Cebeci-Smith turbulence model. The friction velocity, Von

K¶arm¶an constant, law of the wall constant, Coles's wake-strength parameter and boundary layer thickness for the initial

pro¯le are determined as unknown parameters by the Levenberg-Marquardt algorithm. The e®ects on solution about the

location of the measurement station are examined. The results provided by the direct numerical simulation of the °ow are

validated by data obtained through the hotwire anemometry technique in a low-speed wind tunnel. The estimated upstream

velocity pro¯les are shown to compare favourably with hotwire anemometry measurements at the same location.

Keywords: turbulence, boundary layer, inverse problem, law of the wall.

1. Introduction

Inverse problems have originated in the heat transfer community in connection with the estimation of
surface heat °ux histories from measured temperature histories inside a heat-conducting body. In convective
environments, early studies were carried out by Keller and Cebeci(1972), Cebeci et al.(1975) and Cebeci(1976)
in connection with the determination of the spatial variation of the °ow free-stream velocity for a given local
wall shear stress. However, as recognized by Moutsoglou(1989), Cebeci and his co-workers failed to capture the
ill-posed nature of the problem as the calculated values of the direct problem were used as boundary conditions
for the inverse problem. This procedure caused an unnecessary contamination of the inverse problem that made
its results di±cult to assess.

The purpose of the present work is to propose a new methodology to the solution of an inverse problem for
the estimation of upstream velocity pro¯les for incompressible turbulent boundary layers over smooth °at plates.
The solution procedure aims at developing a very robust method which can be used con¯dently to predict local
and global parameters of the °ow. As recorded by Cebeci(1976), \a slight error in the experimental skin-friction
coe±cient will severely a®ect the computed velocity distribution". Of couse, the same remark is valid if we
consider the computed skin-friction coe±cient. In fact, the solution sensitivity on the chosen value of the skin-
friction is known to be high for turbulent °ows and a classical way to overcome this di±culty is to appeal to the
asymptotic two-deck structure of the turbulent boundary layer. Here, the unknown upstream velocity pro¯le
will be represented by the composite Coles's law of the wall, law of the wake pro¯le; then, the friction velocity,
Von K¶arm¶an's constant, the law of the wall constant, Coles's wake-strength parameter and the boundary
layer thickness for the initial pro¯le will be determined as unknown parameters by the Levenberg-Marquardt
algorithm.

The solution procedure will resort to velocity measurements obtained at several di®erent downstream loca-
tions in the stream; the measurements were obtained through the hotwire anemometry technique. The direct
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problem is solved by a ¯nite di®erence method that uses the Cebeci-Smith turbulence model. The e®ects on
solution concerning the location of the measurement station are examined.

2. A Short Review on Inverse Problems

A wide variety of inverse heat conduction problems have been solved in the last two decades for the estimation
of initial or boundary conditions, physical properties, geometric parameters, or heat source intensities. ÄOzisik
and Orlande(2000) and Su and Silva Neto(2000), among others, present some of the methods developed for
the solution of such problems. Despite many potential applications, inverse convection problems have only
recently received some attention. Moutsoglou(1989) apparently was the ¯rst to address an inverse convection
problem that has used a sequential function speci¯cation algorithm for the estimation of the asymmetric heat
°ux in mixed convection in a vertical channel. The same author, Moutsoglou(1990), has also applied the
whole domain regularization technique in an inverse analysis to estimate wall heat °ux in an elliptic laminar
forced convection problem. Raghunath(1993) applied the quasi-Newton conjugate gradient method, which is a
special case of the conjugate gradient method, to obtain the temperature pro¯le at the entrance of a thermally
developing hydrodynamically developed laminar °ow between parallel plates. Huang and ÄOzisik(1992) have
applied the regular and modi¯ed conjugate gradient methods for the estimation of a steady state wall heat °ux
in a hydrodynamically developed laminar °ow in a parallel plate duct. The same method has been applied by
Bokar and ÄOzisik(1995) to estimate the time dependence of inlet temperature in similar °ow conditions. Liu and
ÄOzisik(1996a) have used the Levenberg-Marquardt algorithm for estimation of the thermal conductivity and
thermal capacity of a laminar °ow through a circular duct by using transient temperature readings at a single
downstream location. Machado and Orlande(1997) have used the conjugate gradient method with an adjoint
equation to estimate the timewise and spacewise variation of the wall heat °ux in a parallel plate channel. An
inverse problem for estimating the heat °ux to a power-law non-Newtonian °uid in a parallel plate channel °ow
was solved by Machado and Orlande(1998) by using the same method. Hsu et al.(1998) applied the linear least-
squares method for simultaneous estimation of the inlet temperature and wall heat °ux in a laminar circular duct
°ow. Huang and Chen(2000) have applied the conjugate gradient method in a three-dimensional inverse forced
convection problem to estimate a surface heat °ux. Li and Yan(1999) applied the conjugate gradient method for
the estimation of the space and time dependent wall heat °ux for unsteady laminar forced convection between
parallel °at plates, similar to that studied by Machado and Orlande(1997). Cho et. al.(1999a) developed an
optimization procedure to ¯nd the inlet concentration pro¯le for uniform deposition in a cylindrical chemical
vapor deposition chamber using local random search technique. In a similar work, Cho et. al.(1999b) solved an
optimization problem to ¯nd the inlet velocity pro¯le that yields as uniform an epitaxial layer as possible in a
vertical metalorganic chemical vapor deposition (MOCVD) reactor.

Few works have been published on inverse problems in turbulent °ows despite its obvious technological
relevance. Liu and ÄOzisik(1996) applied the conjugate gradient method with an adjoint equation for solving the
inverse turbulent convection problem of estimating the timewise varying wall heat °ux in parallel plate ducts.
Su et al.(2001) applied the Levenberg-Marquardt method to estimate nonuniform wall heat °ux in a thermally
developing, hydrodynamically developed turbulent °ow in a circular pipe based on temperature measurements
obtained at several di®erent locations in the stream. Su and Silva Neto(2001) solved an inverse heat convec-
tion problem to estimate simultaneously the inlet temperature pro¯le and the wall heat °ux distribution in
a thermally developing, hydrodynamically developed turbulent °ow in a circular pipe based on temperature
measurements obtained at several di®erent positions in the stream, using the Levenberg-Marquardt method.

While all above mentioned works are dedicated to internal °ow and heat transfer problems, Alekseev(1997)
has shown the feasibility of estimation of fream stream parameters in a compressible laminar boundary layer
which is governed by the parabolized Navier-Stokes (PNS) equations.

3. Mathematical Formulation of the Direct Problem

The Reynolds averaged governing equations for a steady, incompressible and two-dimensional turbulent
boundary layer can be written as follows:
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The notation is classical. The eddy viscosity concept is used, what implies that the turbulent stress term is
related to the mean rate of strain by

¡u0v0 = ºt @u
@y
: (3)

In the Cebeci-Smith model, the eddy viscosity model of Boussinesq is involked together with the mixing
length concept of Prandtl and the Van Driest damping function for the characteristic length of the °ow. Thus,
near to the wall

ºt = l
2j@u
@y
j; (4)

where
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+
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)
¤
; (5)

and y+ = yu¿=º, u¿ is the friction velocity , º is the kinematic viscosity, and · = 0:41 (Von K¶arm¶an constant).
Constant A+ is de¯ned by

A+ = 26

µ
1 + yp+

¶¡ 1
2

; (6)

where p+ = (dp=dx)=½(u¿ )
2.

The defect region is described through an eddy viscosity of the type

ºt = C1ue±1°; (7)

where ±1 is the boundary layer displacement thickness, C1 = 0:0168, and ° is the intermittency factor of
Klebano®, given by

° =
£
1 + 5:5(

y

±
)6
¤¡1
; (8)

and ± is the boundary layer thickness.
The partial di®erential equations have to be solved with appropriate boundary conditions,

u = 0; for y = 0 (9)

v = 0; for y = 0 (10)

u = ue(x); as y !1 (11)

u = u0(y); for x = x0 (12)

v = v0(y): for x = x0 (13)

If all °uid properties, coe±cients of turbulent modelling, and boundary conditions are known, the direct
problem given by Eqs. (1) to (13) can be solved to obtain the velocity ¯eld of the turbulent boundary layer.
In this work, the direct problem de¯ned by equations Eq. (1) to Eq. (13) is solved through an implicit ¯nite
di®erence method.

4. Solution of the Inverse Problem

In the inverse problem considered in this work, we are looking for the unknown upstream velocity pro¯le
u0(y); this must be evaluated from velocity measurements taken at several downstream points in the °ow ¯eld.

The unknown upstream velocity pro¯le is represented by the composite Coles's law of the wall, law of the
wake formulation

u0(y) = u¿

·
1

·
ln y+ +A+

2~¼

·
sin2

³¼
2

y

±

´¸
; (14)

where · (Von K¶arm¶an constant), A (law of the wall constant), u¿ (friction velocity), ~¼ (Cole's wake-strength)
and ± (boundary layer thickness) are parameters to be determined.
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Upon the parameterization given by Eq. (14), the inverse problem has been formulated as a parameter
estimation problem. The solution of this inverse problem for the estimation of the ¯ve unknown parameters is
based on the minimization of the ordinary least squares norm de¯ned by

R(~P ) =
MX
m=1

£
um(~P )¡ Zm

¤2
; (15)

where um(xm; ym) are the calculated velocities and Zm(xm; ym) are the measured velocities at points (xm; ym),
m = 1; 2; :::;M , with M being the total number of measurement points.

The vector of unknown parameters is formed by

~PT = [p1; p2; p3; p4; p5] = [·;A; u¿ ; ~¼; ±]: (16)

Equation (15) can be written in the following form,

R(~P ) = [~u( ~P )¡ ~Z]T [~u(~P )¡ ~Z] = ~FT ~F (17)

with ~F being the di®erence vector between calculated and measured velocities, Fm = um¡Zm, m = 1; 2; :::;M:
As the inverse problem is solved as an optimization problem, our objective is to minimize the norm R(~P ),

@R
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=

@
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Considering a Taylor expansion,

F (~P k+1) = F (~P k +¢ ~P k) = F ( ~P k) +
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keeping only the terms up to the ¯rst order terms in Eq. (19), and plugging the resulting expression into Eq.
(18), we obtain the normal equation,

JTJ¢ ~P k = ¡JT ~F ; (20)

where the elements of the Jacobian matrix are

Jmn =
@um
@pn

; m = 1; 2; :::;M and n = 1; ::; 5: (21)

Summing up with a damping factor ¸ to improve the convergence behaviour we have the Levenberg-
Marquardt method,

(JT J + ¸D)¢~P = ¡JT ~F ; (22)

where D represents the diagonal matrix.
Equation (22) is then written in a form convenient to be used in an iterative procedure,

¢P k = ¡(JkTJk + ¸kDk)¡1JkT ~F k; (23)

where k is the iteration index.
A new estimation of the parameters, ~P k+1, is calculated by

~P k+1 = ~P k +¢~P k: (24)

Please, note that the problem given by Eq. (22) is di®erent from that given by Eq. (20). Nevertheless, the
procedure aims at reducing the value of the damping factor with the iterations so that when convergence is
achieved, the obtained solution is about the same as that for the original problem. The iterative procedure
starts with an initial guess for parameters, ~P 0, and new estimates, ~P k+1 are sequentially obtained using Eq.
(24) with ¢~P k given by Eq. (23) until the convergence criterion

j¢p
k
n

pkn
j < ²; n = 1; :::; 5 (25)

is satis¯ed, where ² is a small real number, such as 10¡8. The elements of the Jacobian matrix as well as the
right hand term of Eq. (22) are calculated by using the solution of the direct problem de¯ned by Eq. (1) to Eq.
(13), as described in the previous section.
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5. The Classical Approach

For the simple case of a turbulent °ow over a °at plate at zero incidence, approximate methods based on
the momentum integral equation can be easily deducted for the estimation of some °ow parameters. In these
methods, the boundary layer thickness is approximated by a suitable empirical equation; then, if the velocity
distribution is considered to follow a certain form the momentum equation can be integrated to provide a
relation between the displacement thickness, momentum thickness and shearing stress at the wall.

The assumption of a 1/7-th-power law of velocity distribution advanced by Prandtl relied on the idea that
small di®erences in the velocity pro¯le are not important since the drag will be evaluated from an integral.
Thus, he considered that the velocity distribution in the boundary layer on a plate is identical with that inside
a circular pipe. Hence integration of the momentum equation from the initial value ± = 0 at x = 0 furnishes

±2 = 0:036 x
¡U1 x
º

¢¡1=5
; (26)

± =
72

7
±2; (27)

cf = 0:0576
uex

º
; (28)

u¿ = ue

r
cf
2
: (29)

The four above equations together with the composite law of the wall/law of the wake can now be used to
evaluate the velocity pro¯le at any location from a given velocity pro¯le at any other location. The steps are
the following:

² From a given experimental velocity pro¯le calculate ±2.

² From Eq. 26 calculate the distance of the experimental velocity pro¯le to a virtual plate origin.

² From Eq. 26 calculate ±2 for the unknown pro¯le.

² From Eq. 27 calculate ± for the unknown pro¯le.

² From Eqs. 28 and 29 calculate u¿ for the unknown pro¯le.

² From Eq. 14 construct the unknown velocity pro¯le.

To implement Eq. 14 in the classical approach one needs to know the values of parameters ·, A and ~¼.
Here, the following values were considered:

· = 0:4; (30)

A = 5:0; (31)

~¼ = ¡0; 05757 ln2R±2 + 1:062 lnR±2 ¡ 4; 317; R±2 < 5600; (32)

~¼ = 0:55 ¸ 5600: (33)

6. Experimental Apparatus and Instrumentation

The experiments were carried out in a low-speed wind tunnel located at the Laboratory of Turbulence
Mechanics of COPPE/UFRJ. The wind tunnel is of open circuit type and has a 5 m long test section with
square cross section of 0.67 m x 0.67 m. Wind speed is continuously variable from 0.5 to 3.5 m/s. The turbulent
intensity level in the freestream was about 1.0%. Mean velocity pro¯les and turbulent intensity levels were
measured by using a DANTEC hotwire anemometer series 55M with a standard P11 probe. A Pitot tube, a
high precision inclined multi-tube manometer, and a computer controlled traverse gear were also used. Output
signals of the hotwire anemometer were transmitted to a PC through a 16-bit data aquisition card.

Six longitudinal velocity pro¯les were measured at stations 3:20m, 3:25m, 3:30m, 3:35m, 3:40m and 3:45m
from the beginning of the test section. All pro¯les were measured over the central line of the test section.
Around 60 mean velocity measurement points were taken for each pro¯le.

The friction velocity (u¿ ), Coles's wake-strength parameter (~¼), boundary layer thicknes (±), Von K¶arm¶an
constant (·) and the law of the wall constant (A) for each measured velocity pro¯le were obtained through a
program specially developed in the MathematicaTM software package environment.
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7. Results

The study is to be developed in three parts. The objective of the ¯rst part was to validate the numerical
solution for the direct problem by comparison with some experimental data. The velocity pro¯le measured at
station 3:20m was used as the initial condition for the calculation of velocity pro¯les at the same stations where
the measurements were performed. Figure 1 shows a comparison between velocity pro¯les obtained through the
numerical simulation and the experimental pro¯les at station 3.45m. In Fig. 2, the same results are shown in
inner variables.
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 y/δδδδ

 Experiments
 Direct Numerical Simulation

Figure 1: Validation of the numerical solution for the direct problem. Comparison of calculated and measured
velocity pro¯les. Points denote the experimental data.

The second part aimed at estimating the upstream velocity pro¯le, at station x = 3:20m, by the inverse
method. These pro¯les were then to be compared with pro¯les obtained experimentally and by the classical
approach. A single experimental pro¯le at a downstream station was used in the inverse analysis. We successfully
estimated the upstream velocity pro¯le using measured pro¯les at stations x = 3:25m, x = 3:35m and x = 3:45m.
Figure 3 shows that the estimated upstream velocity pro¯le agrees well with the measured upstream pro¯le.
Figure 4 shows the same comparison in inner variables.

In the third part, we checked the precision of the numerical simulation of the turbulent boundary layer, as a
direct problem, if the estimated initial pro¯le was used as the initial condition. We used the estimated values of
parameters u¿ , ·, A, ~¼ and ± to construct the initial condition and compared the results with that obtained by
using directly the measured initial pro¯le. Figure 5 shows a comparison between the velocity pro¯les at station
3.45m when: i) an inverse initial pro¯le is used as an initial condition, ii) the classical approach is used to ¯nd
the initial condition. Figure 6 shows a comparison of these results in inner variables.

The friction velocity is a °ow parameter that is notoriously di±cult to determine experimentally. In this
work, the friction velocity was determined by means of a non linear regression program developed in the
Mathematica software package for treatment of the experimental data.

Table 1, in addition, shows values of friction velocity estimated by the inverse method compared with the
measured values of friction velocity at station x = 3:20m. As can be seen, the relative errors for u¿ were less
than 5%. This is clear indication that inverse analysis can be used successfully to determine the friction velocity
from mean velocity measurements in the downstream °ow ¯eld.

Figures 7 and 8 show the predicted and measured values of Cf and of ±2. The inverse method shows a
clear advantage over the classical approach. In fact, for the present conditions, the classical approach tends to
underestimates the values of ± what results in higher predicted values of Cf .

8. Conclusion

An inverse analysis for the estimation of upstream velocity pro¯les in an incompressible turbulent boundary
layer over a smooth °at plate was carried out. The turbulent boundary layer direct problem with an algebraic
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Figure 2: Validation of the numerical solution for the direct problem. Comparison of calculated and measured
velocity pro¯les in inner variable.
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Figure 3: Comparison of estimated initial velocity pro¯le with experimental data using one measured velocity
pro¯le at station 3.45m.

Table 1: Comparison of °ow parameters at x=3.20m.

Parameter Experiments Inverse Problem (x=3.45m) Classical Approach

u¿ (m=s) 0.160 0.153 0.162
±(m) 0.0728 0.0637 0.0753
A 5.247 4.964 5.00
· 0.420 0.414 0.410
~¼ 0.495 0.600 0.445
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Figure 4: Comparison of estimated initial velocity pro¯le in inner variable with experimental data using one
measured at station 3.45m.
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Figure 5: Calculated dowstream velocity pro¯les using experimental and estimated initial pro¯les. Points denote
experiments; ¯lled squares, initial pro¯le given by inverse method; ¯lled circles, initial pro¯le given by classical
approach; line, initial pro¯le given by experiments.
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Figure 6: Calculated dowstream velocity pro¯les using experimental and estimated initial pro¯les; inner vari-
ables. Points denote experiments; ¯lled squares, initial pro¯le given by inverse method; ¯lled circles, initial
pro¯le given by classical approach; line, initial pro¯le given by experiments.
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Figure 7: Estimation of friction coe±cient using one measured station, 3.45m. Points denote experiments; ¯lled
squares, inverse method; ¯lled circles, classical approach; line, direct method.
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Figure 8: Estimation of momentum thickness using one measured station, 3.45m. Points denote experiments;
¯lled squares, inverse method; ¯lled circles, classical approach; line, direct method.

turbulence model was solved through a ¯nite di®erence method, which was validated against data obtained in
a low-speed wind tunnel. The inverse problem for the estimation of initial velocity pro¯les was formulated as a
parameter estimation problem that searched for the friction velocity, the Von K¶arm¶an constant, the law of the
wall constant, the Coles's wake-strength parameter and the boundary layer thickness at an upstream station in
the turbulent boundary layer. We have shown, through comparison with the measured velocity pro¯le at the
same station, that the upstream velocity pro¯le can be accurately estimated if experimental data of velocity
measurement within 25 cm from the inlet station is used. The proposed inverse analysis can be used to generate
an accurate and smooth initial velocity pro¯le for numerical simulation of turbulent boundary layer and to
determine accurately some boundary layer parameters, such as the friction velocity and the boundary layer
momentum thickness, that are di±cult to measure directly.
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