

SERIOUS GAME DESTINADO À REABILITAÇÃO DE CRIANÇAS COM DESABILIDADES PSICOMOTORAS

Vinícius Naves Rezende Faria, Universidade Federal de Uberlândia, naves.vinicius@gmail.com Natália Louize Silva, Universidade Federal de Uberlândia, natalialouiz@gmail.com Taciana Abdala Abrahão, Universidade Federal de Uberlândia, tacy_abdala@hotmail.com Kennedy Lopes Nogueira, Universidade Federal de Uberlândia, prof.kenedy@gmail.com Alexandre Cardoso, Universidade Federal de Uberlândia, alexandre@ufu.br Edgard Afonso Lamounier Júnior, Universidade Federal de Uberlândia, elamounier@gmail.com

Resumo. Com o objetivo de agregar às atividades desenvolvidas pela AACD foi desenvolvido, então, o serious games Improved Life. O jogo foi implementado para musicoterapia e para os tratamentos de fonoaudiologia, utilizando o conceito de tecnologias assistivas e realidade aumentada. Desta forma, o sistema poderá auxiliar crianças com déficit de oralidade, na reabilitação física e cognitiva e ainda na inserção social de crianças com autismo.

Palavras chave: realidade aumentada, serious game, reabilitação, musicoterapia, fonoaudiologia.

1. INTRODUÇÃO

Este trabalho baseia-se no desenvolvimento de um sistema de tecnologia assistiva baseado em realidade virtual (RV) e realidade aumentada (RA) destinado à reabilitação de crianças com alguma patologia psicomotora ou mesmo autismo. O sistema se configura como um serious games, isto é, um jogo desenvolvido que não possui como propósito principal o entretenimento, prazer ou diversão (Michael *et al*, 2005). Neste âmbito, tais jogos são destinados a proporcionar um contexto atrativo, de auto reforço afim de motivar e educar os jogadores.

O jogo desenvolvido também se configura como uma Tecnologia Assistiva (TA), que representa atualmente uma área em ascensão, impulsionada, principalmente, pelo novo paradigma da inclusão social, que defende a participação de pessoas com deficiência nos diversos ambientes da sociedade. As TA são essenciais para diversas pessoas como auxílio à mobilidade, à aprendizagem, trabalho, comunicação e interação com o mundo. Apesar da importância e a crescente demanda da área, no Brasil, as pesquisas e projetos de TA ainda são escassos (Rodrigues e Alves, 2009)

Há várias aplicações para a RV e a RA. Uma delas se dá justamente na área da saúde, tanto em aplicações cirúrgicas quanto em aplicações de tratamentos, como as que auxiliam na reabilitação de pacientes (as chamadas tecnologias assistivas) (Lányi, 2006). RV configura-se como uma interface avançada da terceira geração para aplicações computacionais, na qual o usuário pode interagir, em tempo real, a partir de um ambiente tridimensional sintético, utilizando dispositivos multissensoriais (Kinner *et al*, 1995). Já a RA aplica-se em todos os sentidos humanos e proporciona ao usuário uma interação segura, sem necessidade de treinamento, uma vez que ele pode trazer para o seu ambiente real objetos virtuais, incrementando e aumentando a visão que ele tem do mundo real (Kirner e Zorzal, 2005), (Kirner e Tori, 2004).

Serious games se configuram excelentes ferramentas de aprendizagem, de forma a despertar o interesse do aluno [6], a forma lúcida e descontraída de um jogo faz com que ele se torne um excelente instrumento de aprendizado, incentivando seus usuários aos processos de pesquisa, construção de habilidades e de estratégias (Adams *et al*, 2012). Ao se tratar de crianças com desabilidades psicomotoras e crianças autistas, tal estratégia se mostra muito eficaz

Afim de aplicar os conceitos serious games em reabilitação, como uma TA, houve a aproximação dos grupos de pesquisa do Laboratório de Computação Gráfica e Engenharia Biomédica da Universidade Federal de Uberlândia (UFU) com a Associação de Assistência à Criança Deficiente (AACD). Em Uberlândia, a AACD possui uma filial cujo principal objetivo é promover a prevenção, habilitação e reabilitação de pessoas com deficiência física. Especialmente, de crianças, adolescentes e jovens, favorecendo a integração social através do desenvolvimento de próteses e órteses e tratamentos psicomotores.

Com o objetivo de também agregar às atividades desenvolvidas pela AACD foi desenvolvido, então, o serious games Improved Life. O jogo foi implementado para musicoterapia e para os tratamentos de fonoaudiologia. Desta forma, o sistema poderá auxiliar crianças com déficit de oralidade, na reabilitação física e cognitiva daquelas que possuem necessidades especiais e ainda na inserção social de crianças com autismo. Tal sistema, além e auxiliar os profissionais da saúde na aplicação das terapias, possibilita também a extensão da terapia para a casa dos pacientes, por ser um sistema de simples utilização, executável pelos familiares ou cuidadores.

2. METODOLOGIA

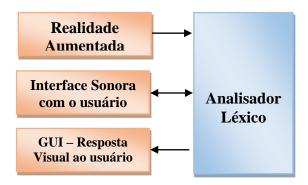
O sistema implementado para o auxílio tanto na Fonoaudiologia quanto na Musicoterapia utilizam o toolkit chamado ARToolKit que se encontra gratuitamente no site do laboratório HITL da Universidade de Washington (Kato et al, 2000). Essa biblioteca providencia técnicas de Visão omputacional para calcular a posição e orientação de uma câmara em relação a marcas (em cartões), para que objetos virtuais em 3D possam ser sobrepostos precisamente através das marcas e em tempo real.

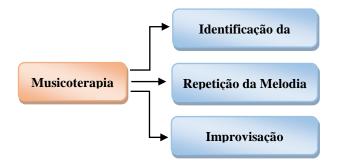
Primeiramente a imagem real de vídeo capturada é transformada em imagem binária. Posteriormente esta imagem é analisada, e o ARToolkit encontra as regiões quadradas na cena real. Para cada quadrado, o padrão dentro do quadrado é capturado e comparado novamente com padrões pré-cadastrados Washington (Kato *et al*, 2000). Se houver alguma similaridade, então o ARToolKit considera que encontrou um dos marcadores de referência.

Os objetos virtuais visualizados em aplicações desenvolvidas com as distribuições do ARToolKit podem ser implementados com OPENGL e/ou com VRML. A visualização desses objetos virtuais é realizada no momento da inserção de seus respectivos marcadores no campo de captura da câmera de vídeo (Adams *et al*, 2012).

2.1. Arquiteturado Sistema

De acordo com os requisitos do sistema levantados, a arquitetura ilustrada na Figura 1 foi desenvolvida. Os principais módulos são:




Figura 1 – Arquitetura do sistema

O modulo de Realidade Aumentada é responsável por capturar a interação do usuário com o sistema e repassar a sequência das notas musicais coletadas, ou as frases montadas, para o módulo Analisador léxico. A interface sonora é responsável por emitir feedback sonoro em tempo real das ações do usuário. O módulo G.U.I (Graphic User Interface) divide-se em duas janelas, uma para feedback visual em tempo real para o paciente e outra responsável pelo acompanhamento visual do desempenho do paciente. Esta interface pode emitir dados em forma de gráficos para acompanhamento do desenvolvimento. Por fim, o módulo Analisador Léxico é aquele responsável pela comparação e validação dos exercícios.

2.2. Analisadores Léxicos

Para a construção de frases verbais é necessário que haja clareza quanto à mensagem que se deseja transmitir. Com isso, são necessários elementos básicos tais como: sujeito; verbo; e complemento. Desta forma, foi criado um analisador léxico para avaliar a presença dos elementos de frase citados acima, porém, sem referência com a ordem dos elementos. A princípio, essa ordem não foi considerada significante, pois a maioria das crianças, a quem se destina a aplicação, ainda desconhecem as regras gramaticais.

Para a aplicação em musicoterapia também se utilizou da construção de uma analisador léxico, agora para comparar as notas musicais tocadas pelos usuários com melodias cadastradas no sistema. A aplicação de musicoterapia se divide em três aplicações ou níveis. Tais níveis são representados na figura 2.

Figura 2 – Níveis da aplicação em Musicoterapia

A criação dos níveis no jogo tem a finalidade de mensurar qual o impacto do tratamento no paciente. De forma que, a cada resposta de melhoria do indivíduo, o profissional de Saúde pode ou não inicializar o tratamento com o nível acima. No nível I, Identificação da Escala Musical, o jogo emite uma sequência crescente e decrescente de 5 notas musicais que estão presentes na escala de Dó maior (da nota Dó até a Sol e de Sol a Dó). O objetivo é que o paciente ouça essa sequência, consiga identificar a escala e assim repeti-la sem erros.

Já no nível II, Repetição da Melodia, o princípio de funcionamento é o mesmo princípio de funcionamento do anterior, porém o sistema irá tocar uma melodia. O jogo terá duas opções de escolha de músicas, "DÓ RÉ MI FÁ" e a "Atirei o pau no Gato". Dessa forma, o paciente não terá que repetir uma sequência crescente ou decrescente e sim uma música, o que exige um avanço no quadro do mesmo. Por fim, o nível III, Improvisação, nada mais faz do que permitir que o usuário toque qualquer sequência de notas que ele quiser. É a chamada improvisação. Esta ação faz com que o paciente explore ainda mais a percepção musical que adquiriu ao longo dos três níveis, pois, a improvisação requer certo conhecimento musical e criatividade da parte do paciente.

É importante ressaltar que o uso do sistema desenvolvido, por se tratar de uma tecnologia que utiliza de marcadores, proporciona grande facilidade do uso dos pacientes com desabilidades psicomotoras. Isto porque o mesmo gera mais acessibilidade do que o uso de um teclado, o que provê uma maior acessibilidade musical, figura 3 (Correa, 2011)

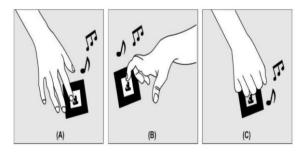


Figura 3 – Acessibilidade musical

3. RESULTADOS E DISCUSSÃO

Após a implementação do protótipo do sistema, iniciou-se a fase de testes e validação. Num primeiro momento, apenas os profissionais da AACD/Uberlândia interagiram com o ambiente virtual desenvolvido. Na Figura 4 é possível visualizar a tela do sistema com os objetos virtuais em 3D da aplicação em musicoterapia.

Figura 4 – Módulo Musicoterapia.

A figura 5 é possível visualizar a tela do sistema com os objetos virtuais em 3D da aplicação em fonoaudiologia. Foram desenvolvidas diversas bibliotecas dentro desta aplicação, dentre elas as bibliotecas de instrumentos musicais, brinquedos e alimentação.

Figura 5 – Módulo Fonoaudiologia.

Foi realizada uma avaliação do protótipo pelos profissionais da AACD (musico terapeutas e fonoaudiólogos). A tabela 1, mostra as questões que foram abordadas.

Questão	Conceito	Descrição
1	Eficiência	Finalidade que foi proposto
2	Usabilidade	"Navegação do Ambiente"
3	Funcionalidade	Facilidade de uso: "Intuição"
4	Aplicabilidade	A importância que atribui o sistema em um contexto de reabilitação

Tabela 1. Avaliação do sistema proposto.

A partir da avalição realizada, fez-se a avaliação e se chegou aos resultados expressados pela figura 6. A avaliação considerou o número de pessoas que avaliaram o sistema em relação à classificação qualitativa (fraco, regular, bom, muito bom ou ótimo)

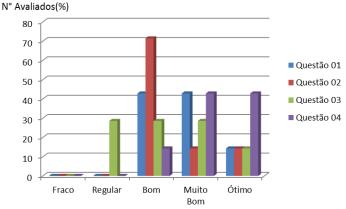


Figura 6 – Gráfico estatístico da avaliação do sistema pelos profissionais da AACD.

Os comentários dos avaliadores expressam os resultados, dentre as considerações destaca-se:

- Aumentar da distância entre os marcadores de musicoterapia, de forma a aumentar o grau de movimentação (menos preciso);
- Criar contraste nas cores das figuras, pois, existem crianças com limitações visuais (todos os marcadores).

- Aumentar o tempo da reprodução do som e o mesmo não repetir quando apertado (musicoterapia e fonoaudiologia).
- Se possível almofadar o teclado virtual por questões de segurança da criança (todos os marcadores).
- Disponibilizar o sistema para utilização na AACD (porém processo sob aprovação do comitê de ética)

4. CONCLUSÕES

O sistema se comportou bem nos primeiros testes e está aguardando liberação do Conselho de Ética da AACD para testes com pacientes. O fato da flexibilidade de acesso aos objetos virtuais, providenciada pela Realidade Aumentada levou os profissionais da saúde a identificar uma maior facilidade de exploração de movimentos. Este fato contribui positivamente para o processo de reabilitação.

Outra vantagem observada é que além ser usado por profissionais para estimular a comunicação dos pacientes nas clínicas, há a possibilidade de uso do projeto pelos próprios usuários em suas residências. Por apresentar facilidade de uso, o sistema pode ser instalado em qualquer computador ou "tablet". Desta forma, cria-se uma terapia continuada e interessante à criança.

Como trabalho futuro, além de adequar o sistema sob as observações dos profissionais da AACD, pretende-se aumentar a biblioteca musical e fazer ajustes a partir de sugestões de usuários que avaliarão o sistema. Em trabalhos futuros outros, além de novas bibliotecas de marcadores, outros módulos do analisador léxico podem ser criados para ensinar o português e sua estrutura, além de auxiliar a fala e expressar desejos, isto para a aplicação em fonoaudiologia.

5. REFERÊNCIAS

Adams, L.M., Trevisan, T.B., Filho, P.L.P., Silva, H.P. 2012. "Desenvolvimento de um aplicativo em realidade Aumentada com o artoolkit." III Simpósio Nacional de Ensino de Ciência e Tecnologia, Ponta Grossa – RS.

Correa, A.G.D., 2011. "Realidade Aumentada Musical para Reabilitação. Estudo de Caso em Musicoterapia.", Tese de Doutorado.

Kato, H.; Billinghurst, M.; Poupyrev, I. 2000 "ARToolKit Version 2.33", Human Interface Lab, Universidade de Washington.

Kinner, C., Deriggi, F., Kubo, M.M., Sementille, A. C., Brega, J.F., Santos, S., 1995. "Virtual Environments for Shared Interactive Visualization. Workshop of the german-brazilian cooperative program in informatics", Brlin – Alemanha, 4v

Kirner, C.; Tori, R. 2004 "Introdução à Realidade Virtual, Realidade Misturada e Hiper-realidade". In: Claudio Kirner; Romero Tori. (Ed.). Realidade Virtual: Conceitos, Tecnologia e Tendências. São Paulo, v. 1, p. 3-20.

Kirner, C., Zorzal, E.R. 2005. "Aplicações Educacionais em Ambientes Colaborativos com Realidade Aumentada." In: XVI Simpósio Brasileiro sobre Informática na Educação, Juiz de Fora - MG. Anais do XVI Simpósio Brasileiro de Informática na Educação. Porto Alegre - RS: Sociedade Brasileira de Computação - SBC, 2005.

Lányi, C.S., 2006. "Virtual Reality in Special Needs Early Education. The International Journal of Virtual Reality", 5(4): 55-68.

Michael, D., & Chen, S., 2005. "Serious Games: Games That Educate, Train, and Inform" (1er ed.). Course Technology PTR.

Rodrigues, P.R., Alves, L.R.G., 2009. "TECNOLOGIA ASSISTIVA – UMA REVISÃO DO TEMA". HOLOS, Ano 29, Vol. 6.

6. AGRADECIMENTOS

Os autores agradecem a AACD pela colaboração neste trabalho, a FAPEMIG pelo apoio financeiro por meio do projeto APQ-02934-11, a CAPES e ao Programa de Pós-Graduação em Engenharia Mecânica.

7. ABSTRACT

With the goal of adding to the activities developed by the AACD was developed the serious games Improved Life. The game was implemented to music therapy and speech therapy treatments, using the concept of assistive technologies and augmented reality. Thus, the system may help children with deficits in oral, physical and cognitive rehabilitation and even the social inclusion of children with autism.