Estudo da Técnica da Mandibulotomia

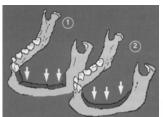
Delma Pereira Caixeta, Faculdade de Engenharia Mecânica - FEMEC, Universidade Federal de Uberlândia - UFU, e-mail: delmapc@mecanica.ufu.br

Cleudmar Amaral de Araújo, Faculdade de Engenharia Mecânica – FEMEC, Universidade Federal de Uberlândia – UFU, e-mail: cleudmar@mecanica.ufu.br

Sindeval José da Silva, Faculdade de Medicina – FAMED, Universidade Federal de Uberlândia – UFU, e-mail: sindeval101@uol.com.br

Introdução

Devido à precocidade de utilização do fumo, o índice de tumores na cavidade oral e orofaringe vêm aumentando de forma significativa. Na maioria dos casos, a forma de tratamento destes tumores é a sua remoção, neste caso, feita através de um processo de mandibulotomia, ou seja, corte da mandíbula e posterior fixação. A técnica pode ser dividida em mandibulotomia marginal (Figura 1a) ou segmentada (Figura 1b), podendo ser realizada separadamente em várias posições na mandíbula.



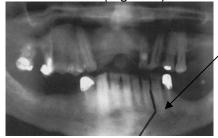


Figura 1: Mandibulotomia Marginal e Segmentar. (Shah, 2000)

Neste caso, é essencial a utilização de um procedimento adequado em busca de um planejamento apropriado do tratamento cirúrgico, uma vez que, o processo de reconstrução da mandíbula visa restaurar não só o seu contorno, mas também a função mastigatória. Este trabalho visa conhecer a técnica da mandibulotomia e seus procedimentos de execução, através de uma ampla revisão bibliográfica do assunto e apresentar uma proposta também avaliação da técnica através da análise do campo de tensões/deformações gerado por diferentes tipos de corte na mandíbula humana e suas soluções reparadoras, através do Método dos Elementos Finitos (MEF) e de análise experimental. O trabalho pretende utilizar técnicas de otimização utilizando modelagens via similitude para otimizar técnica e miniplacas.

Tipos de cortes da Mandíbula

Na abordagem cirúrgica, podem-se efetuar diferentes tipos de cortes dependendo da região da mandíbula para posterior fixação. As três localizações para a mandibulotomia são: lateral (através do corpo ou ângulo da mandíbula), mediana e paramediana. O corte lateral apresenta uma série de desvantagens principalmente com relação à necessidade de um posterior tratamento químico, por estar localizado no campo lateral de radioterapia, ocasionando atrasos de cicatrização da ferida. Portanto, não se recomenda essa técnica. O corte mediano apresenta a desvantagem de requerer a extração do dente incisivo central além de seccionar os músculos centrais genioióide e genioglosso levando a um retardo da recuperação da função de mastigação e da deglutição. O corte paramediano não tem as desvantagens do corte lateral e evita as següelas do corte mediano, sendo, portanto, tem sido a técnica mais utilizada. (Figura 2)

Ćorte Paramediano

Figura 2: Corte paramediano. (Shah, 2000)

Para se garantir uma ligação rígida das partes segmentadas, utilizam-se fios de aço ou miniplacas de titânio e parafusos, sendo que o interesse recente é pelo uso da última técnica. (Figura 3)

Figura 3: Fixação do corte: fios ou miniplacas de titânio e parafusos. (Shah, 2000)

Choi et al (2005) mostraram que o aumento da estabilidade da fixação com miniplacas é obtido com o aumento do número de parafusos a um máximo de três parafusos por segmento. O aumento de estabilidade atingido por duas miniplacas (com quatro ou seis parafusos) foi duas vezes maior que aquela obtida com uma miniplaca, mesmo em condições severas de atrofia óssea.

Técnicas de análise

A análise numérica por elementos finitos representa uma aproximação na qual são feitos cálculos estimados do campo da tensão e deformação de corpos sujeitos a forças (Maurer, 1999). O MEF tem sido usado largamente na ciência médica e na dentística na última década para analisar os efeitos biomecânicos em várias modalidades de tratamentos. (Figura 4)

Figura 4- Modelo em elementos finitos de uma mandíbula humana. (Gallas, 2004)

A modelagem experimental também é uma técnica bastante difundida no meio científico para avaliar a estabilidade da ligação, e os resultados utilizados para validar e/ou ajustar modelos em elementos finitos. (Erkmen et al (2005))

Considerações Finais

Os estudos feitos até então mostraram uma grande necessidade de analisar de forma mais aprofundada o comportamento do complexo mandibular. Estes estudos fazem parte de um projeto maior de Tese de Doutorado em que se propõe avaliar a técnica de mandibulotomia através da análise do campo de tensões/deformações gerado por diferentes tipos de corte na mandíbula humana e suas soluções reparadoras, através do MEF e de análise experimental. Estas soluções reparadoras serão analisadas através de diferentes números e posições diferentes das placas fixadas com

quantidades de parafusos utilizando métodos de otimização para se determinar a posição ideal, a quantidade das placas reparadoras e números ótimos de parafusos de fixação. Os níveis de tensão gerados serão avaliados sob o ponto de vista biomecânico, visando avaliar e, se possível, melhorar a técnica, auxiliando os profissionais da área, Médicos Dentistas, fornecendo-lhes um melhor entendimento do assunto e indicando processos adequados na operacionalização da técnica. Já foi iniciado o estudo do gradiente de tensões de um modelo simplificado da mandíbula humana geometria sob corte mediano aplicando elementos de contato utilizando o Programa ANSYS[®].

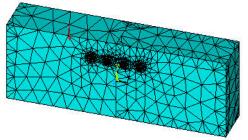


Figura 5: Modelo do ANSYS[®] analisado – corte mediano, com elementos de contato.

Referências bibliográficas

Choi, B. H.; Huh, J. Y.; Suh, C. H.; Kim, K. N. An in vitro evaluation of miniplate fixation techniques for fractures of the atrophic edentulous mandible. *International Journal of Oral and Maxillofacial Surgery.* 34: 174 - 177. 2005.

Erkmen, E.; Simbek, B.; Yucel, E.; Kurt, A. Three-dimensional finite element analysis used to compare methods of fixation after sagittal split ramus osteotomy: setback surgery-posterior loading. *British Journal of Oral and Maxillofacial Surgery.* 43: 97-104. 2005.

Gallas, M. T.; Fernàndez, J. R. A three-dimensional computer model of the human mandible in two simulated standart trauma situations. *Journal of Cranio-Maxillofacial Surgery*. 32: 303-307. 2004.

Maurer, P.; Holweg, S.; Schbert, J. Finite element analysis of different screw-diameters in the sagittal split osteotomy of the mandible. *Journal of Cranio-Maxillofacial Surgery*. 27, 365-372. 1999.

Shah, J. P.; Kowalki, L. P. *Cirurgia da Cabeça e Pescoço*. Revinter, Rio de Janeiro. ISBN 85-7309-360-9. 2000.