# Análise de estruturas ósseas de regiões com implantes osseointegrados

**Cláudio Luís Hayasaki**, Departamento de Engenharia Mecânica, Universidade Estadual Paulista - Bauru, e-mail: <a href="mailto:claudiolha@yahoo.com">claudiolha@yahoo.com</a>

**Edson A. Capello Sousa**, Departamento de Engenharia Mecânica, Universidade Estadual Paulista - Bauru , e-mail: <a href="mailto:capello@feb.unesp.br">capello@feb.unesp.br</a>, home page: <a href="http://www.feb.unesp.br/dem/Pessoal/capello.htm">http://www.feb.unesp.br/dem/Pessoal/capello.htm</a>

### Introdução

A inserção de implantes em estruturas ósseas e esperando-se um determinado período, provoca um fenômeno conhecido como osseointergração. A osseointegração consiste da formação de uma calosidade óssea ao redor da região onde foi inserido o implante. Realizando uma análise estrutural da região óssea, constata-se um aumento da resistência mecânica devido ao aumento da rigidez. Utilizando o Método dos Elementos pode-se prever por simulação Finitos, computacional esse aumento na rigidez e, consequentemente uma redução tensões, em relação à estrutura óssea nãooperada.

### Materiais e Métodos

Esta seção subdivide-se em duas partes: a primeira, o trabalho experimental feito por Dekon(2004) e a segunda, a simulação computacional para se tentar chegar aos resultados experimentais e validar o modelo obtido no Ansys.

Neste trabalho foi utilizada a tíbia de coelhos como estrutura óssea, a qual foi submetida a um ensaio de flexão até a sua ruptura, na parte experimental.

Conforme trabalho de Dekon(2004), no primeiro grupo, não houve tempo para ocorrer a osseointegração(coelhos de 1 a 10), como se pode notar na Tabela 1; houve um decréscimo na resistência de 43.9% em média.

No segundo grupo, ocorreu a osseointegração(coelhos de 11 a 20) após um período de espera de 6 meses após a cirurgia de inserção do implante de titânio na tíbia; houve um acréscimo na resistência de 24.2% em média.

Na parte de simulação, escolheu-se o pacote computacional Ansys Release 10.

| Coelho | Condição       | Carga(kgf) | Decréscimo de<br>Resistência(%) |
|--------|----------------|------------|---------------------------------|
| 1      | Sem<br>E/com D | 68.2/36.4  | -46.62                          |
| 2      | Sem<br>D/com E | 65.8/34.2  | -47.98                          |
| 3      | Sem<br>E/com D | 61.4/41.9  | -31.67                          |
| 4      | Sem<br>D/com E | 60.2/39.8  | -33.9                           |
| 5      | Sem<br>E/com D | 67.1/44.3  | -33.9                           |
| 6      | Sem<br>D/com E | 70.1/29.1  | -58.5                           |
| 7      | Sem<br>E/com D | 50.6/39.6  | -21.7                           |
| 8      | Sem<br>D/com E | 69.75/38.3 | -45.1                           |
| 9      | Sem<br>E/com D | 85.9/35.5  | -58.6                           |
| 10     | Sem<br>D/com E | 61.1/31.4  | -48.6                           |
| médias | Sem/com        | 66.0/37.0  | -43.9                           |

Tabela 1: Grupo Não-osseointegrado

| Coelho | Condição       | Carga(kgf) | Acréscimo de<br>Resistência(%) |
|--------|----------------|------------|--------------------------------|
| 11     | Sem<br>E/com D | 64.0/71.4  | 11.5                           |
| 12     | Sem<br>D/com E | 56.7/83.2  | 46.8                           |
| 13     | Sem<br>E/com D | 64.9/73.5  | 13.8                           |
| 14     | Sem<br>D/com E | 52.7/58.6  | 11.1                           |
| 15     | Sem<br>E/com D | 54.7/64.6  | 18.1                           |
| 16     | Sem<br>D/com E | 34.1/53.3  | 56.5                           |
| 17     | Sem<br>E/com D | 58.6/62.7  | 7.1                            |
| 18     | Sem<br>D/com E | 54.2/71.0  | 31.1                           |
| 19     | Sem<br>E/com D | 50.3/67.8  | 34.9                           |
| 20     | Sem<br>D/com E | 57.2/73.4  | 28.3                           |
| médias | Sem/com        | 54.8/68.0  | 24.2                           |

**Tabela 2: Grupo Osseointegrado** 

Na construção da malha do modelo geométrico foram utilizados 47516 elementos tetraédricos de 10 nós. A malha foi do tipo livre.

O material do osso foi caracterizado como estrutural, linear, elástico e isotrópico.

Na Figura 1, pode-se observar a intensidade de tensões no grupo osseointegrado.

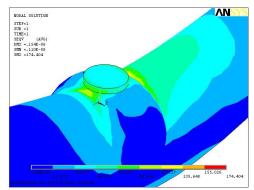



Figura1: Intensidade de tensões no modelo osseointegrado(Ansys).

Na Figura 2, observa-se a análise de tensões no osso cortical sem a presença do implante.

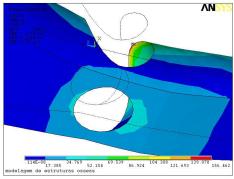



Figura 2: Análise de tensões no osso cortical(Ansys).

Na figura 3, tem-se a análise de tensões no osso cortical.

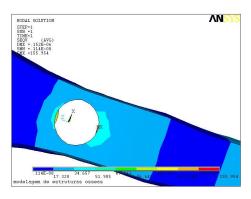



Figura 3: Tensões de Von Mises no osso cortical (Grupo Osseointegrado)- Ansys.

Para o osso cortical, as tensões (Von Mises) foram de aproximadamente de 42 MPa na região inferior da estrutura óssea, o que conduz a uma coerência de resultados já que o valor teórico é de 38±11,8 MPa no membro posterior para a tensão de escoamento, segundo Ramasamy (2006). Vale salientar que a tensão de escoamento para a tíbia possui um valor próximo da tensão de ruptura, apresentando uma fratura do tipo frágil.

Na figura 4, é apresentada a tíbia após realizado o ensaio de flexão por 3 pontos.

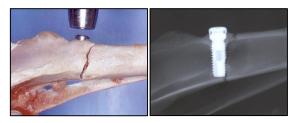



Figura 4: tíbia de número 15 do grupo osseointegrado e respectiva imagem radiográfica.

#### Conclusão

O fenômeno da osseointegração contribuiu para a formação de uma calosidade, que proporcionou um aumento na rigidez da estrutura óssea em relação à tíbia não-operada. No grupo não-osseointegrado houve um decréscimo da resistência.

## Referências bibliográficas

Dekon, A.F.C. Resistência à fratura por flexão de tíbias de coelho hígidas e transfixadas por implantes osseointegráveis Tese de Doutorado - Faculdade de Odontologia de Bauru 2004.

Ramasamy, J.G. et al Local variations in the micromechanical properties of mouse femur: the involvement of collagen fiber orientation and mineralization. Journal of Biomechanics Article in Press, 2006 March.