Caracterização Mecânica de um Protótipo de Alça de Retração Ortodôntica

Marcelo do Amaral Ferreira, CPGEI - Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial, UTFPR - Universidade Tecnológica Federal do Paraná, e-mail: marcelo.ferreira@avalon.sul.com.br

Marco Antônio Luersen, DAMEC – Departamento Acadêmico de Mecânica, UTFPR - Universidade Tecnológica Federal do Paraná, e-mail: luersen@utfpr.edu.br

Paulo César Borges, DAMEC – Departamento Acadêmico de Mecânica, UTFPR - Universidade Tecnológica Federal do Paraná, e-mail: pborges@utfpr.edu.br

Introdução

As alças (ou molas) retráteis são meios auxiliares na correção das más-oclusões dentárias. Elas produzem forças e momentos que são responsáveis pela movimentação dentária e assim são utilizadas para correções em ortodontia. O sistema de forças que a alça provoca sobre os dentes determinará o tipo de movimentação dentária. Assim. é necessário conhecimento das propriedades mecânicas da alça, de forma a que o clínico aplique a ativação adequada e consequentemente o sistema de forças apropriado ao tratamento. O presente trabalho tem, portanto, como objetivo, avaliar o sistema de forças bem como o desempenho elástico de um protótipo de alça. Para realizar esta avaliação são utilizados o Método dos Elementos Finitos (MEF) e ensaios experimentais (esses últimos estão em fase de desenvolvimento).

Características da alça e metodologia

O fio da alça é uma liga metálica de titâniomolibdênio (beta-titânio) cujo módulo de elasticidade vale 69 GPa e a tensão de escoamento 1240 MPa. A secão transversal é retangular de dimensões 0,406mm x 0,559mm. (0,016in x 0,022in).Na análise via MEF, a alça foi modelada com elementos finitos de viga bidimensional. Devido às deflexões serem relativamente grandes, o problema é do tipo não-linear. A ativação foi considerada máxima para a alça quando for atingida a tensão de escoamento. Neste ponto parou-se o processo de simulação. A Figura 1 mostra o modelo de elementos finitos na situação de repouso e as características geométricas da alça. A Figura 2 apresenta o equipamento utilizado nas medições experimentais (consultar Ferreira et al. (2005) para maiores detalhes).

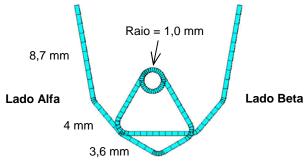
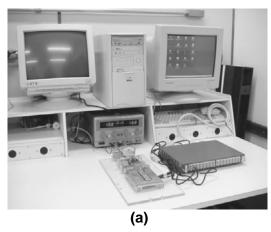



Figura 1: Modelo de elementos finitos e dimensões da alça.

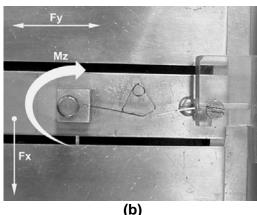


Figura 2: Equipamento utilizado nas medições experimentais. Em (b) é mostrado o detalhe da fixação da alça na plataforma de forças.

Resultados

A Tabela 1 apresenta o valor da força horizontal em função da ativação, bem como os momentos nas extremidades alfa (anterior) e beta (posterior) e as respectivas relações momento/força horizontal (M_z/F_y), obtidos da simulação via MEF. A relação M_z/F_y é importante pois define o tipo de movimento produzido (Burstone et al, 1995). Da Tabela 1 pode-se ainda calcular o valor médio da constante elástica, que neste caso é 40,3 gf/mm. Essas mesmas propriedades serão levantadas nos ensaios experimentais.

Discussão e conclusões

Da Tabela 1 verifica-se que para a ativação de 2,5mm tem-se relações M_z/F_v de 11,46 e 14,45mm para os lados alfa e beta, respectivamente. Clinicamente pode-se dizer que este carregamento deve iniciar o movimento de raiz no lado alfa e um movimento intenso de raiz no lado beta, o que permitiria um contínuo diferencial de ancoragem, com as raízes dos dentes posteriores se inclinando para mesial e não suas coroas. Ao atingir-se a ativação de 3,5mm tem-se relações M_z/F_{ν} de 9,30 e 11,50mm para os lados alfa e beta, respectivamente. Pode-se dizer que no lado (posterior) ocorre movimento beta inclinação de raiz e que no lado alfa (anterior) o movimento tende à translação. Desta forma existe um diferencial de ancoragem entre os lados alfa e beta, onde o lado beta mostra maior resistência à inclinação das coroas dos dentes posteriores ao sítio de extração à medida que a alça desativa a partir de 3,5mm. Para ativações superiores a 3,5mm, ter-se-á, no lado alfa, um movimento de inclinação controlada passando inclinação não-controlada, e no lado beta o movimento de translação passa para inclinação controlada е depois nãocontrolada. Considerando a análise via MEF, o protótipo estudado mostrou produzir níveis de forças compatíveis com os limites biológicos descritos na literatura (Yang e Balwing, 1974; Burstone et al. 1995) e apresentou um sistema de forças capaz de produzir movimentação controlada dentes. Comparações entre os resultados MEF obtidos via е as medições experimentais serão ainda realizadas.

Referências bibliográficas

Burstone, C. J.; Van Steenbergen, E.; Hanley, K. J., Modern Edgewise Mechanics and the Segmented Arch Technique, Farmington, University of Connecticut, 1995.

Ferreira, M. A.; Oliveira, F. T.; Ignácio F. A.; Borges, P. C., Experimental Force Definition System of a New Orthodontic Retraction Spring, Angle Orthodontist, v. 75, n. 3, p. 334-343, 2005.

Yang, T. Y.; Baldwin, J. J., Analysis of space closing springs in orthodontics, Journal of Biomechanics, v. 7, p. 21-28, 1974.

Tabela 1: Forças e momentos desenvolvidos pela alça (resultados obtidos via MEF).

Ativação (mm)	Força na direção horizontal (F _y)		Lado "Alfa"		Lado "Beta"	
	(gf)	(N)	Momento (N.mm)	M _z /F _y (mm)	Momento (N.mm)	M _z /F _y (mm)
0,5	26,62	0,2611	9,4614	36,2367	11,8740	45,4768
1,0	54,84	0,5380	9,9330	18,4628	12,8790	23,9387
1,5	69,57	0,6825	10,3920	15,2264	13,3490	19,5590
2,0	84,71	0,8310	10,8390	13,0433	13,7950	16,6005
2,5	100,29	0,9838	11,2740	11,4601	14,2150	14,4497
3,0	116,28	1,1407	11,6970	10,2542	14,6080	12,8062
3,5	132,70	1,3018	12,1070	9,3002	14,9700	11,4995
4,0	149,58	1,4674	12,5060	8,5226	15,3010	10,4273
4,5	166,92	1,6375	12,8920	7,8730	15,5980	9,5255
5,0	184,74	1,8123	13,2660	7,3200	15,8620	8,7524
5,5	203,09	1,9923	13,6270	6,8398	16,0900	8,0761
6,0	221,97	2,1775	13,9740	6,4175	16,2820	7,4774
6,5	241,44	2,3685	14,3060	6,0401	16,4400	6,9411
7,0	261,54	2,5657	14,6220	5,6990	16,5630	6,4555
7,5	282,30	2,7694	14,9190	5,3871	16,6530	6,0132
8,0	303,78	2,9801	15,1960	5,0992	16,7110	5,6075
8,5	326,01	3,1982	15,4520	4,8315	16,7400	5,2342
9,0	349,03	3,4240	15,6830	4,5803	16,7420	4,8896