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Abstract. In this work we report an analytical solution for the time-dependent one-dimensional neutron transport equation
in cartesian geometry for bounded and unbounded domain. The main idea consists in the application of the Laplace
transform technique in time variable, solution of the resulting equation by the LTSN method and reconstruction of the
angular flux in time-variable by numerical inversion scheme. We report numerical simulations and results validations
with the ones of literature.
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1. INTRODUCTION

Exists an extensive literature covering the subject of solution of the one-dimensional time-dependent transport equation
in cartesian geometry, for unbounded domain. For illustration, we mention the works of [3][2][4][5][6][12][13]. However,
to our knowledge, the methods appearing in those works aren’t applied in the solution of the transport problems in a slab.
On the other hand, recently the LTSN method [14][9][10] solved this sort of problem in a bounded domain, we mean a slab
[8]. The main idea consists of the steps: application of the Laplace transform in time variable, solution of the resulting
equation by the LTSN method and reconstruction of the angular flux in time-variable by the numerical inversion using
the Gaussian quadrature scheme. We must recall that this methodology is coined as TLTSN approach. To underline the
generality of this method, in the sense it can be applied either for bounded and unbounded domain, in this work we step
further by solving this time-dependent problem by this methodology for unbounded domain. For such, due the analytical
feature of the solution expressed in matrix form, we just replace the boundary condition at the thickness (x = L) of the slab
by the boundness of the angular flux at infinity. To hit this goal we vanish the sub-vector of arbitrary constants associated
to the set of the positive eigenvalues. We outline the paper as follows: in section 2, we construct the LTSN solution for
either the bounded and unbounded domain and in section 3 we report numerical simulations and results validation with
the ones of literature.

2. THE LTSN SOLUTION FOR TIME-DEPENDENT PROBLEM

In order to construct the LTSN solution for the time-dependent, one-dimensional neutron transport problem in cartesian
geometry for unbounded domain, in the sequel, we briefly discuss the solution derivation of this type of problem by the
LTSN method for a slab. So far, let us consider the following isotropic transport time-dependent problem:
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∂

∂t
ψ(t, x, µ) + µ

∂

∂x
ψ(t, x, µ) + σtψ(t, x, µ) =

σs

2

∫ 1

−1

ψ(t, x, µ′)dµ′ + S(t, x) (1)

for 0 < x < d, with the initial condition

ψ(0, x, µ) = φ(x, µ) (2)

and the incident flux boundary conditions,

ψ(t, 0, µ) = f(t, µ), for t > 0, µ > 0, (3)

and

ψ(t, d, µ) = 0, for t > 0, µ < 0. (4)

Here, we adopt the standard notation for the parameters. Applying the Laplace transform technique in the time variable
in equation (1), we come out with the equation:
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Ψ(p, x, µ′)dµ′ + R(p, x, µ), (5)
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with the boundary condition

Ψ(p, 0, µ) = f(p, µ), for µ > 0, (6)

and

Ψ(p, d, µ) = 0, for µ < 0. (7)

Here Ψ(p, x, µ) denotes the Laplace transform of ψ(t, x, µ); t → p, σp
t = 1 + p

v and R(p, x, µ) = 1
v φ(x, µ) + S̄(p, x).

The SN approximation of the above ansatz reads like:

µn
d

dx
Ψn(p, x) + σp

t Ψn(p, x) =
σs

2

N∑

i=1

wiΨi(p, x)wi + Rn(p, x), (8)

with to the boundary condition

Ψn(p, 0) = fn(p), for µn > 0, (9)

and

Ψm(p, d) = 0, for µn < 0. (10)

Here, µn are the N roots of the N th degree Legendre Polynomial, ordering in a decrease order, −1 < µN < ... <
µN/2+1 < 0 < µN/2 < ... < µN < 1, Ψn(p, x) is the transformed angular flux at the discrete direction µn, and Rn(p, x)
is the transformed source term. Recasting equation (8) in matrix form, we have:

d

dx
Ψ(p, x)−AΨ(p, x) = R(p, x) (11)

where A(p) a N order matrix whose entries are

aij =
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σswj

2µi
− σp

t

µi
if i = j,

σswj

2µi
if i 6= j.

(12)

and boundary conditions:

Ψ1(x) = f and Ψ2(x) = 0 (13)

Here Ψ1(x) and Ψ2(x) denote the N/2 order vectors for respectively the positive and negative µ directions. The well
known LTSN solution for (11) problem has the form:

(
Ψ1(p, x)
Ψ2(p, x)

)
=

(
X11(p, x) X12(p, x)
X21(p, x) X22(p, x)

) (
eD+x 0

0 eD−x

)(
ξ1(p)
ξ2(p)

)
+

(
H1(p, x)
H2(p, x)

)
(14)

Here D± are respectively the positive and negative eigenvalues diagonal matrices of N/2 order and X(p) is the eigenvec-
tor matrix of A(p) appearing in equation (12). The particular solution H(p, x) is written as:

H(p, x) = H+(p, x) + H−(p, x) =
∫ x

L

B+(p, x− ζ)R(p, ζ)dζ +
∫ x

0

B−(p, x− ζ)R(p, ζ)dζ. (15)

where

B(p, x) = X(p)eD(p)xX−1(p), (16)

At this point we are in position to construct the solution for the unbounded domain. For such, we replace the boundary
condition given by equation (4) by the boundness of the angular flux at infinity. We fulfill this condition forcing that the
N/2 component of the unknown vector ξ1, appearing in equation (14), are identically null. Then applying the boundary
condition (3) at x = 0, we determine the remaining unknown sub-vector ξ2 by solving the resulting linear system. Once
the vector of arbitrary constants are determinate, the final solution is expressed like:

Ψ1(p, x) = x12(p, x)eD−xξ2 + H−
1 (p, x) if µ > 0 (17)
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and

Ψ2(p, x) = X22(p, x)eD−xξ2 + H−
2 (p, x) if µ < 0 (18)

Now, we are able to reconstruct the angular flux using the definition of the Laplace transform inversion for the transformed
angular flux (14), we mean:

Ψ(t, x) =
1

2πi

∫ γ+i∞

γ−i∞
Ψ̄(p, x)eptdp. (19)

We must underline that the above ansatz is an analytical solution for the problem (8), in the sense that no approximation
is made along its derivation. To overcome the drawback of solving analytically the line integral in equation (19), we solve
it numerically. Bearing in mind the exponential behavior of the solution, the line integral appearing in equation (19) is
well approximated by the Gaussian quadrature scheme

Ψ(t, x) =
1

2πi

∫ γ+i∞

γ−i∞
Ψ̄(p, x)eptdp ≈

M∑
m=1

am
pm

t
Ψ̄

(pm

t
, x

)
(20)

where am e pm are the roots and weights of the Gaussian quadrature. We must recall that the equation (20) is exact if the
integrand is a polynomial of degree 2M− 1 in the variable 1/p. Finally, we must remark that the TLTSN solution for a
bounded domain (slab) is expressed by equation (14) meanwhile for unbounded domain by equations (17) e (18).

3. NUMERICAL RESULTS

To show the aptness of the TLTSN method we apply this methodology to solve the following time-dependent transport
problem in unbounded domain: reflexive and vacuum boundary condition at x = 0; σs takes the values 0.9, 0.8 and 0.3;
σt = 1.0cm−1 and v = 106cm/sec. On the other hand, the initial condition φ(x, µ) is written as the solution of the
following stationary problem:

µ
∂

∂x
ψ(x, µ) + ψ(x, µ) =

ω

2

∫ 1

−1

ψ(x, µ′)dµ′ + Q(x), (21)

with

Q(x) =
{

1, if 0 < x < 10,
0, if x > 10,

(22)

and subject to the boundary condition

ψ(0, µ) = ψ(0,−µ), µ > 0 and lim
x→∞

ψ(x, µ) = 0. (23)

Here we must mention that we solve the initial condition problem as a two-layer semi-infinite slab. In fact we consider
that the first layer has a constant source and the second one is a homogeneous medium, we mean, without source. We also
apply the idea described in this work to solve the stationary problem by the LTSN method.

In table 1, we report the numerical results attained by the TLTSN method, proceeding likewise the stationary problem.
We also present validation of the results encountered comparing the TLTSN results with the ones got by the TLTSN
approach assuming now a bounded domain, we mean a slab with increasing thickness 40 ≤ L ≤ 80. The reason for this
procedure comes from the fact that for large thickness it is well known, that the slab solution coincides with the ones of
semi-infinite medium.
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Table 1. Numerical Results for TLTSN with σs = 0.9

N L x = 0 x = 10
40 1.27498× 10−1 3.15297× 10−4

50 1.28973× 10−1 3.19445× 10−4

4 60 1.28127× 10−1 3.21779× 10−4

70 1.28127× 10−1 3.21779× 10−4

80 1.28127× 10−1 3.21779× 10−4

40 1.28159× 10−1 3.19215× 10−4

50 1.29171× 10−1 3.19823× 10−4

10 60 1.29615× 10−1 3.22104× 10−4

70 1.29615× 10−1 3.22104× 10−4

80 1.29615× 10−1 3.22104× 10−4

40 1.28742× 10−1 3.19478× 10−4

50 1.29196× 10−1 3.19880× 10−4

50 60 1.29328× 10−1 3.22132× 10−4

70 1.29328× 10−1 3.22132× 10−4

80 1.29328× 10−1 3.22132× 10−4

40 1.28743× 10−1 3.19478× 10−4

50 1.29196× 10−1 3.19988× 10−4

100 60 1.29328× 10−1 3.22136× 10−4

70 1.29328× 10−1 3.22136× 10−4

80 1.29328× 10−1 3.22136× 10−4

Table 2. Numerical Results for TLTSN with σs = 0.8

N L x = 0 x = 10
40 1.32586× 10−1 3.16077× 10−4

50 1.32957× 10−1 3.16124× 10−4

4 60 1.33115× 10−1 3.17381× 10−4

70 1.33115× 10−1 3.17381× 10−4

80 1.33115× 10−1 3.17381× 10−4

40 1.32851× 10−1 3.16872× 10−4

50 1.33146× 10−1 3.16266× 10−4

10 60 1.34247× 10−1 3.17422× 10−4

70 1.34247× 10−1 3.17422× 10−4

80 1.34247× 10−1 3.17422× 10−4

40 1.32855× 10−1 3.16885× 10−4

50 1.33169× 10−1 3.16298× 10−4

50 60 1.34278× 10−1 3.17425× 10−4

70 1.34278× 10−1 3.17425× 10−4

80 1.34278× 10−1 3.17425× 10−4

40 1.32855× 10−1 3.16886× 10−4

50 1.33169× 10−1 3.16298× 10−4

100 60 1.34278× 10−1 3.17426× 10−4

70 1.34278× 10−1 3.17426× 10−4

80 1.34278× 10−1 3.17426× 10−4
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Table 3. Numerical Results for TLTSN with σs = 0.3

N L x = 0 x = 10
40 1.36158× 10−3 3.24761× 10−6

50 1.35241× 10−3 3.22489× 10−6

4 60 1.34986× 10−3 3.21915× 10−6

70 1.34986× 10−3 3.21915× 10−6

80 1.34986× 10−1 3.21915× 10−6

40 1.36824× 10−3 3.24458× 10−6

50 1.35146× 10−3 3.22350× 10−6

10 60 1.34326× 10−3 3.21453× 10−6

70 1.34326× 10−3 3.21453× 10−6

80 1.34326× 10−3 3.21453× 10−6

40 1.36846× 10−3 3.24432× 10−6

50 1.35088× 10−3 3.22069× 10−6

50 60 1.34305× 10−3 3.21450× 10−6

70 1.34305× 10−3 3.21450× 10−6

80 1.34305× 10−3 3.21450× 10−6

40 1.36846× 10−3 3.24430× 10−6

50 1.35088× 10−3 3.22069× 10−6

100 60 1.34305× 10−3 3.21451× 10−6

70 1.34305× 10−3 3.21451× 10−6

80 1.34305× 10−3 3.21451× 10−6

Table 4. Numerical Results for TLTSN with x = 10

σs N x = 10
4 3.21779× 10−4

0.9 10 3.22104× 10−4

50 3.22132× 10−4

100 3.22136× 10−4

4 3.17381× 10−4

0.8 10 3.17422× 10−4

50 3.17425× 10−4

100 3.17426× 10−4

4 3.21915× 10−6

0.3 10 3.21456× 10−6

50 3.21450× 10−6

100 3.21451× 10−6

4. CONCLUSION

From the analysis of the above good results, besides the analytical character of the solution as well its aptness to
solve transport problem with large N , (N up 2000) we are confident to affirm that the TLTSN technique is a promising
and robust approach to handle time-dependent problem in one-dimensional cartesian geometry either for bounded and
unbounded domain. Furthermore, we must remember that the proved convergence of this method allow us to generate
benchmark results for this sort of problem. To show the generality of this method, we focus our future attention to the task
of extension of this methodology to solve the two-dimensional stationary transport problem in cartesian geometry for the
angular flux, as well for one-dimensional time-dependent radiative transfer problems without azimuthal geometry.
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