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Abstract. Conducting materials carrying an electrical current dissipate heat. This phenomenon is known as Joule 
effect that establishes the relation between the generated heat and the electrical current. In industry, there is a series of 
problems related to the determination of the distribution of temperature in conductors, generally in the form of cables 
extended or configured in coils of different geometries and other arrangements. This article presents analytical 
solutions to the steady state heat transfer problem of an infinite electrical cylindrical conductor with an insulation 
cover carryong a direct electrical current and submitted to boundary conditions of the first and third kind. Special 
attention is given to the influence of the electrical resistivity temperature-dependence on the temperature in the center 
of the cable. Following the analytical solutions, numerical results are presented and discussed using a commercial cable 
specification. 
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1. INTRODUCTION 

 
Thermal analysis of electrical conductors (wires and cables) carrying an electrical current is an important subject for 

the generation, transmission and distribution electrical energy companies. In these cases, the conductors form long 
transmission lines and therefore the Joule losses are very important. 

Recently, with the advance of the embarked electronic systems, specially in vehicles, the great amount of cables 
having a few meters of length distributed in small spaces has motivated a series of studies about the ideal diameter of 
these cables and consequently their weight, when considering the maximum current that can be carried and the heat to 
be dissipated. 

Electronics equipments are constituted of a set of components, amongst them, inductors. These devices, of different 
geometries like cylindrical (circular or rectangular section) and toroidale, heats when carrying an electrical current. The 
generated heat must be removed to the environment and therefore is indispensable the knowledge of the thermal load. 

There is in industry many equipments that use coils of metallic wires carrying an electrical currents, that, as 
expected, produces heat. As it is known, elctronic/electrical equipments and coils with superheating aggravate the risk 
of accidents and malfunction. 

In all these applications, the knowledge of the radial temperature distribution in the conductor and consequently the 
determination of its maximum temperature (hot-spot temperature) is very important. 

Although there are in specialized literature articles about heat conduction in wires and cables (Das et al., 2001 and 
Hiranandani, 1991 ), there are few works that present closed analytical solutions (Carslaw and Jaeger, 1959). 

This article presents an analytical study of the temperature behaviour in the center of cables with an insulation cover 
carrying an electrical direct current, considering boundary conditions of the first and third kind. Two cases will be 
analyzed: resistivity of the conducting material which is (a) temperature-independent and (b) temperature-linearly 
dependent. 
 
2. MATHEMATICAL FORMULATION 

 
The problem analyzed in this work consists in the determination of the radial temperature in an infinite and isotropic 

cylindrical electrical conductor covered by an insulation layer and carrying a direct electrical current. The analysis is 
based on the analytical solution of the heat conduction differential equation subject to boundary conditions of the first 
and third kind. The analysis shows the effect of the electrical resistivity of the material on the temperature in the center 
of the conductor as a function of the boundary condition imposed on the external surface of the cable. Figure 1 shows 
the geometry studied. It consists of an inner cylinder of radius r1 (m) and thermal conductivity k1 (W/mK) made of an 
isotropic electrical conductor material and an outer cylinder of radius r2 (m) and thermal conductivity k2 (W/mK) made 
also of an isotropic insulation material. Heat is generated in the inner cylinder and dissipated by convection from the 
outside surface at r = r2. It is assumed that the inner and outer cylinders are in perfect thermal contact. 

 



 
Figure 1. Geometry of the problem. 

 
The equation for the conduction of heat in an isotropic medium is the following (Baehr and Stephan, 1994): 
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where T is the temperature (K), t the time (s), k is the thermal conductivity (W/mK), ρ the density (kg/m3), c the 

specific heat (J/kgK), 
.
q  the energy generation rate per unit of volume (W/m3) and x is the position vector. 

In cases of the thermal conductivity and the specific heat are temperature-independent, Eq.(1) becomes: 
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where α(T) = k/ρc(t) is the thermal diffusivity (m2/s). 

When the energy generation rate per unit of volume is independent of the time and position, Eq.(2) yields: 
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For an infinite cylindrical conductor assuming that 0zTT =∂∂=φ∂∂  and steady state conditions, Eq.(3) becomes: 
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For a conductor of resistivity ρe(T) (Ω m) carrying an electrical current of density J (A/m2), the energy generation 

rate per unit of volume is given by ρe(T)J2. In cases of the resistivity of the material is a linear function of the 
temperature, one has: 
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with 2J)oTL1(oa α−ρ=  and 2JLob ρ= , where oρ (Ωm) is the resistivity and Lα (1/K) is the temperature 

coefficient, both at T= oT . 
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3. GENERAL SOLUTIONS 
 
3.1. Temperature - independent resistivity 
 

There are two regions to be considered: the electrical conductor (r ≤ r1) and the insulation cover (r1 ≤ r  ≤ r2). For the 
first region, the differential equation and their solution are: 
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where A and B are integration constants depending on the boundary conditions at r = 0 and r = r1. Otherwise, for the 
second region, one obtains readly the following differential equation and their solution: 
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where C and D are integration constants depending on the boundary conditions at r = r1 and r = r2. 
 
3.2. Temperature – linear dependent resistivity 
 

In this case, the mathematical formulation for the electrical conductor region is given by the following differential 
equation: 
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The solution of the above equation is: 
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where 1kb=λ , A and B are the integration constants depending on the boundary conditions at r = 0 and r = r1 and 

0J and 0N are the Bessel functions of first and second kind, both of zero order. 
On the other hand, for the insulation cover region, the differential equation and their solution are: 
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where C and D are the integration constants depending on the boundary conditions at r = r1 and r = r2. 
 
4. PARTICULAR SOLUTIONS 
 
4.1. Temperature - independent resistivity 
 
Boundary conditions of the first kind 
 

Here, for r = r1, one has T1 = T2. In addition to this condition, it follows: 
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On the other hand, for r = r2, one has T2 = TS, where TS is the temperature on the surface of the cable. Therefore, the 

solutions are: 
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Boundary conditions of the third kind 
 

In this case, for r = r1, one has T1 = T2. Besides, 
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where T∞ is the air temperature. Therefore, the solutions are: 
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4.2. Temperature – linear dependent resistivity 
 
Boundary conditions of the first kind 
 

Here, for r = r1, one has T1 = T2. In addition to this condition, yields: 
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On the other hand, for r = r2, one has T2 = TS. In this way, the solutions are: 
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Boundary conditions of the third kind 
 

In this case, for r = r1, one has T1 = T2. Besides, one has also the following conditions: 
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Therefore, the solutions are: 
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5. NUMERICAL EVALUATION 

 
Table 1 shows the thermophysics, electrical and geometric properties of the materials used in this work. 

 
Tabela 1. Copper and the PVC datas. 

 
Parameters Copper PVC Ref 
Diamenter (mm) 3.9 x Pirelli 
Thickness (mm) x 1 Pirelli 
Thermal conductivity (W/mK) 401 0.17 Incropera 
Resistivity at 27°C (Ωm) 1.72 x 10-8 x Schuster 
Temperature coefficient (/°C) 0.004 x Schuster 
Melting point (°C) 1084 80 wikipedia 

 
The convection heat transfer coefficient was calculated using, for the Nusselt number, the correlation proposed by 

Churchill and Chu (1975). The thermophysical properties of the air have been calculated with the data given by VDI 
Wärmeatlas (1984) after application of a polynomial fitting. The influence of the radiation heat transfer on the cable 
temperature will be investigated in a next work. 

Figure 2 shows the temperature rise in the center of the cable (r = 0) (Fig.2a) and in the middle point of the 
insulation cover (r = rc = (r1+r2)/2) (Fig.2b) as a function of the electrical current for the boundary condition of the first 
kind. 

As one can see, the effect of the temperature-dependence of the electrical resistivity on the temperature in the center 
of the cable and, consequently, in the middle point of the insulation cover, is not important in the range from 0 to 100A. 
The physical explanation to this behaviour is that the boundary condition of the first kind imposes a limit on the growth 
of the temperature (see this at 60A, where T1(0)–T∞ is 29°C), as a result of the great heat dissipation to the environment. 
The smallest the temperature variation, the smallest the influence of temperature on the resistivity. The same 
phenomenon does not occur in the case of the boundary condition of the third kind. 



 
(a) 

 
(b) 

 
Figure 2. Temperature rise in the center of the cable (a) and in the middle point of the insulation cover (b) as a 

function of the electrical current for the boundary conditions of the first kind. 
 

Figure 3 shows the temperature rise in the center of the cable (Fig.3a) and in the middle point of the insulation cover 
(Fig.3b) as a function of the electrical current for the boundary conditions of the third kind. In this case, the cable 
heating is high and, therefore, the influence of resistivity is more evident. 

 
 

 
 
 



Proceedings of ENCIT 2008                                                                      12th  Brazilian  Congress of Thermal Engineering and Sciences 
Copyright © 2008 by ABCM November 10-14, 2008, Belo Horizonte, MG 

 

 
(a) 

 
    (b) 

 
Figure 3. Temperature rise in the center of the cable (a) and in the middle point of the insulation cover (b) as a 

function of the electrical current for the boundary conditions of the third kind. 
 

In this case, as was already pointed out, the effect of the temperature-dependence of the electrical resistivity on the 
temperature in the center of the cable and thus, in the middle point of the insulation cover, is significant in the range 
from 50 to 100A. The physical explanation to this behaviour is that the boundary condition of the third kind does not 
limit the growth of the temperature (see this at 60A, where T1(0)–T∞ is 62°C). It should be noted that in the boundary 
condition of the first kind, the temperature at the insulation cover surface was fixed and for this reason, less heat is 
dissipated during the natural convection process. The highest the temperature variation, the highest the influence of 
temperature on the resistivity. 

 
 



6. CONCLUSIONS 
 

The conduction of heat problem analyzed in this work consists in the determination of the steady state radial 
temperature profile in an infinite and isotropic cylindrical electrical conductor covered with an insulation layer and 
carrying a direct electrical current. The analysis is based on the analytical solution of the heat conduction differential 
equation subject to boundary conditions of the first and third kind and temperature-dependent electrical resistivity. 

From the results obtained in this work, the following conclusions and remarks could be drawn: 
1. The effect of the electrical resistivity temperature-dependence of the conductor material on the temperature in 

the center of the conductor as well as on the middle point of the insulation cover depends on the kind of the 
boundary condition imposed in the external surface of the cable. 

2. Under the thermal viewpoint, the insulation cover material imposes a limit on the maximum electrical current 
conducted by the cable. 

3. In the determination of the maximum current that can be carried by an electrical conductor on natural 
convection regime (boundary condition of the third kind), it is important to take into account the electrical 
resistivity temperature-dependence. As one can verify in Fig.3b, for 75A approximately, the temperature in the 
middle point of the insulation cover is 80°C if one consider the resistivity temperature-independent. Otherwise, 
if the resistivity is considered temperature-dependent, this temperature is 94°C. In this work, the insulation 
cover is made of PVC, which according to Table 1 has a melting point of 80°C. Therefore, the maximum 
current should be less than 75A. 
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