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Abstract. In this work, numerical results are presented for velocitg &eat-flow profiles and particle and heat-flow rates
of a rarefied gas confined in a plane channel defined by two |ghrahtes subject to a temperature gradient. The problem
is modelled by the BGK kinetic equation and two differenesypf surface-gas interaction law are analyzed, i. e., the
Cercignani-Lampis model that is defined in terms of normal tangential accommodation coefficients and the usual
Maxwell model. Here, the two parallel plates have differemtmical compositions, i. e., with different accommaoatatio
coefficients. A modern analytical version of the discretlirates method (ADO) is used to solve this problem and a
detailed analysis is performed in regard to the influencéefdurfaces on the physical quantities.
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1. INTRODUCTION

Problems involving rarefied gas dynamics may be modeled ziBann equation, which is initially approximated
by kinetic equations. In these problems, gas interactidtistive surface play an important role inasmuch as the sarrfac
temperature, its rugosity and chemical composition infbeethese interactions directly (gas-surface) leadingfterdnt
accommodation coefficients [4]. In mathematical modelgynary conditions take into account the type of surface
through scattering kernels. Among the different types @ittscing kernels expressing different interactions betwe
gas and surface are: the scattering kernel of Maxwell [18jckv considers the fractiofi — «) of reflected particles
specularly and the remaining ones reflected diffusely, bads¢attering kernel of Cercignani-Lampis [3], which featu
two accommodation coefficients to better represent theighlysroperties of the surface: the accommodation coefficie
of the tangential momentuifay;) and the kinetic energy accommodation coefficient due to mabvelocity component
(an). In recent studies, the Cercignani-Lampis kernel assediafith the analytical method of discrete-ordinates was
used to solve a class of problems based on kinetic equatioii$diming to find results for the analysis of surface effect
which are important for rarefied gas dynamics phenomenarefdre, it is extremely important to consider different
accommodation coefficients. The purpose of this paper iséotiue boundary conditions of Maxwell and Cercignani-
Lampis (which describe the gas-surface interaction) aateatwith the analytical method of discrete-ordinates 3D
[1] to find the solution to the Creep-Thermal problem, basethe BGK model [2], considering that the plates through
which the gas flows have different chemical compositions [5]

2. MATHEMATICAL FORMULATION

Take the written kinetic equation in terms of perturbatidp, c) for a distribution function of a local Maxwellian as

Cygyh(y,c) + eh(y,c) = en3/? / / / e F(c/, e)h(y, c')dc, de;, dc, + S(c), @)

—00 —00 —0O0

where the scattering kernel for the BGK model is given by
F(c/,c) =1+2(c"-¢) + (2/3)(c* —3/2)(> — 3/2).

In addition, we consider the unidimensional case for thenadisional variable y (measurement in terms of mean-free
pathl), the components of the velocity vectat,, ¢,, c.) expressed in adimensional units,

S(C) = _CI(C§+CZ+CE—5/2) e EZJgTLoﬂ'l/zl,

so thato is the diameter of the gas particles collision in the appr@tion of the rigid spheres ang is the density of
the gas particles balance.

In this work, two specific problems are investigated, botbctibed by Eqg. (1) and differentiated by boundary condi-
tions. For one of the problems, the boundary conditions ofxwl are used and for the other, the Cercignani-Lampis
[4, 3] boundary conditions are used,respectively, given by

Tw - TO
Ty

h(Fa, ¢z, £y, ;) = oy [2czuwl + (* - 2)} + (1 — ag)h(Fa, cq, Fey, ¢z)
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—|—@ /dc / / ~"h(za, c, Fey, €, )de, de, 2

wherel = 1, 2 represents the walls of the channel, is the plate velocity andj, is the constant temperature of reference,
and

h(:,:avcxa:Fcych) :/ / / :Fa C‘],a:Fcyv z)Rl( ;c?ZFCya z Cmaicyacz)dC;dC;dC;7 (3)
0 —o00

so that

# Ti(cy s ex)Si(c, = ey) Ti(E, « es), 4
o, o, (2 — ay,) v

Ri(d, ), c,  coyey, ) = Y

x) Y Tz

(1 — o)y — 17]2]

Ti(x :y) =exp [— a2 — o)

and

17n1/272/\217n1/2
Sl(l,:y)_exp{[( )%y — a] H (1= a) /2y
Qp, Qp,
For computational effects, it is written as
To(w) = To(w)e™™,

wherel(w) is Bessel’'s modified function

1 27
Ip(w) = %/0 ev s dg,

Note that in Eq. (4) the kernel of Cercignani-Lampis inclside&o accommodation coefficients defined as accom-
modation coefficient of kinetic energy due to the normal comgnt of velocity(a,, € [0, 1]) and the accommodation
coefficient of the tangential momentufn; € [0,2]) [3, 4] . Physically, the Cercignani-Lampis kernel admitarree-
flection which may occur on rugose surfaces. In the limit cagdeena, = 2 anda,, = 0, the velocity changes signal
after colliding with a surface, thus changing its directidhena; = 1 anda,, = 1 the Cercignani-Lampis kernel (4)
coincides with a diffuse reflection. On the other hand, inithé casea; = 0 and«,, = 0 becoming a specular reflection.

To evaluate physical quantities Siewert [10] is followewld #or the velocity profile we get

) :7r_3/2/ / /e_c/zh(y,cmcy,cz)czdczdcydcz (5)
and for the heat-flow profile

y) = 732 / / / h(y, co, ¢y, ) (€% — 5/2)cade,de,de, (6)

—00 —00 — 00

Taking into account the definition of physical quantitiedenrms of momentums of functiaol, we multiply Eq. (1)
respectively by

1 » -
qsl(cmycz) = _Cme_(cl'2+('22)
T
and
1 ey
Pa(ce,c.) = 7\/5%(012 + e, = 2)e(e"Hes”)
T

we integrate it in relation to, andc, introducing a new notatiof = ¢, we define

hl(y,f) = [ [ (bl(czacz)h(yaCzafacz)dcmdcz
and

(y g / / ¢2 C:mcz) (yacarvfacz)dcadcz
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and we find the equations

€5 + (&) =7 [~ e - 5 ™
and
0 h h =0 8

3. AVECTORIAL FORMULATION

ConsideringH(y, £) a vector with components, (y, ) andhs(y, £) we may rewrite Eq. (7) and (8) in the vectorial
form as

0 e IN et *
€5 H. ) + H(p.) = [ (R )+ 87O, ©)
where
() =% q, (10)

Q= { (1) 8 }’ H(y.§) = { Z;Ez:g ] and  S*(¢) = { _%_5;‘;% }

The methodology used to obtain Eq. (9) is also applied to thenbary conditions. Therefore, for the boundary
conditions of Maxwell, Eq. (2) we find the equation in the el form

H(Fa, ££) = (1 — a))H(Fa, ¥). (11)

For the boundary conditions of Cercignani-Lampis, Eq. (8)have

H(Fa.£6) = Ar [ H(Fa. 7¢)A(E. ' (12)
where
1—ay 0
Ar= { 0 (1—oy)? } (13)
and
’ _ J2¢ _ ¢n27 _ 1/2 41
fene) = 2 exp[_ (1= )/ 512} 10{2@ o) 2¢€] a4
ny Qn, Qny
withl =1,2.
Based on the vectorial notation, we can express physicaitijies , Eqs (5) and (6) as
uly) =72 [ e oG9 (15)
and
a) == [ €@ -1 VEnwok, (16)

which respectively represent the velocity profile and thettilew profile.
In addition to these physical quantities, we also evaluadlow rate of particles

U= 1 /:l u(y)dy (17)

T 2a2

and the heat-flow rate

Q= L /_a q(y)dy. (18)

2a?
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4. DEVELOPING THE SOLUTION

The problem defined by Eq. (9) is non-homogeneous, theréfoselution is written as follows

H(y,¢) = H"(y, &) + H(y, ). (19)
As for the homogeneous problem, a particular solution isifbu
e,

V2
Substituting Eq. (19) in Egs. (9), (11) and (12), we concltige the homogeneous solution must satisfy equation

9 - |

€5 H 0.0+ H 0, = [ WO 0.¢)a¢ (20)
the boundary conditions of Maxwell

H"(Fa,+€) — (1 — )H"(Fa, 7€) = R} (€) (21)

and the boundary conditions of Cercignani-Lampis

HY(ra ) - Ar [ H'(Fa 5 A(EL O = R(o) (22)
where¥ (¢') is given by Eq. (10),

R (&) = (1 — ay)H(Fa, ¥§) — H (Fa, ££) (23)
and

Ri§) = A1 [ (R0, 5€) A6 B (0, £6) (24)

Here,A,; e f,(¢', &) are given by Egs. (3.5) and ( 3.6 ), respectively.
Note that! in Egs. (21)-(24) assumes values (quantities?) 1 or 2, septing the channel walls.

4.1 A discrete-ordinates solution
We solve the homogeneous problems, Egs. (20)-(22), thrthuglanalytical method of discrete-ordinates. In this

sense, we define the quadrature scheme and rewrite the Bdn (he discrete-ordinates version as

+io H”(y,ia)+H’ly,i§Z Zwkwgk "y, &) + H" (y, —&)]. (25)

For Egs. (25), the following solutions are proposed
H"(y, £6) = ®(v, £) e /¥
and after substituting in Eq. (25), we find
N
(v F &P, £&) =v Y wi®(&)[ (v, &) + B(v, —&)].
k=1

Now we have vector®_, (v) and®_(v) of 2NV x 1 dimension, withV componentg x 1, respectively defined b® (v, &)
and® (v, —&). Writing

U=, (v)+®_(v)
and after some algebraic manipulations we find the probleseldfvalues, with self-valuels/v2, thus obtaining the values

of the separation constant Therefore, the solution in discrete-ordinates for the bgemeous equation is given by

H (y) = A,®' + B, ®% + Z [A; @ (v;)e”@F/Y 4 B.®—(v;)e”(a79/vi], (26)
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where we introduce the exact solutichs and®2 of dimension2N x 1, respectively defined bj¥ (vectors) components
of the form

:é e Fi=|"," | 27
e-i] o moe[] e

Now, aiming to find the physical quantities, taking into accbrarefied gases confined between parallel plates with
different chemical compositions,we do not use the symmendition, H(y,¢) = H(—y, —¢), here as it was used in
Knackfuss and Barichello [6]. This fact is directly refletti@ the number of arbitrary constants present in the soiutio
of the homogeneous problems, that is, analytically we oldaquare algebraic system4d¥ order, differently from the
2N system obtained in Knackfuss and Barichello [6].

To determine the arbitrary constams andB;, j = 1,...,2N for the boundary conditions of Maxwell case, we
substitute the Egs. (26) in Eq. (21) and for the condition€efcignani- Lampis case, we substitute the Eq. (26) in Eq.
(22) obtaining two systems of linear algebraic equations.

Finally, we find the complete solution

Ho(y) = HL(y) + A1®" + Bi®L + ) [4;®(v))e” P/ 4 B (v;)e (7)), (28)

Here,H (y) = H?(y, £&) denotes a vectaN x 1 with N componentg x 1.
5. PHYSICAL QUANTITIES OF INTEREST

To obtain physical quantities in the discrete-ordinatesiea, we substitute Eq. (28) in Egs. (15)-(18).
The following definitions are used next

N(v;) = [wiA(&) w2A(§2) - wnAEN)[P+(v)) + - (v))]

with componentsV, (v;) and N2 (v;), where

A =€ { e 1y v ]

and the expressions

M(y) = Aje” (aty)/v;
Qly) = Bj e—(a—y)/v;
O) = Ayv; (1= ()
P(y) = Bjv; (1— e~ (2a)/vi)

to write:
velocity profile

2N
u(y) = Av+ Buy+ Y [M;(0) + Qs(0) | Ma(wy):

j=2

heat-flow profile
=2 +Z M) + Qs ()| N2 (v;):
flow rate of particles

U= [QaAl + Z [ )] Nl(yj)}

heat-flow rate

Q= | - 5+ 5[0, + Py Natw)|
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6. NUMERICAL RESULTS

To find numerical results, the computational implementatias developed through FORTRAN language programs.
Initially, the quadrature scheme is defined in associatigh the analytical method of discrete-ordinates (ADO) te im
plement solutions. For a lot of problems in the rarefied gamdhics, the following procedure has proved to be adequate
[5, 7]. Aiming to calculate the integrals in the intery@J o), we use the non-linear transformation

u(€) =e*

to mapé € [0,00) underu € [0, 1], and then the quadrature scheme of Gauss-Legendre limeagped in the interval
[0,1] is used. The next step is to determine the self-values (antssbf separation) and self-vectors. Lastly, we find the
arbitrary constants so as to obtain the physical quantifigsterest.

Results are shown in Tables 1 to 4 and in Figures 1 to 3 forrdiffiegases obtained witN = 60 quadrature points.
The numbers in brackets in these tables represent powens.dDE and CL notations represent diffuse- specular boyndar
conditions (Maxwell) and boundary conditions of Cercigrlaampis, respectively. In the kinetic equation , given ly. E
(1), the parameter was considered arbitrary. In the case of the BGK model, whisrevaluated in terms of viscosity or
thermal conductivity, its value is equal to 1, thatds ¢, = ¢, = 1.

To obtain the numerical results shown in the tables and grapming up next, the following gases are considered:
Ne ( Neon ), Xe (Xenon) and Ar (Argon). The values for the caedfits of tangential accommodatiémn;, ) and accom-
modation coefficienta; ) for surface 1, are formulated in terms of experimental v&lygigen by Lord [8]. For surface 2,
the coefficient valueéa;, andasy) were reproduced from Sharipov [9] who follows the experitakwork of Porodnov
et al[11].

In relation to the normal accommodation coefficiemt ( e «,,,), as far as we know, experimental results do not exist,
therefore numerical values are chosen based on the thecomhamodation coeffient of the gases listed above, presente
in the work of Thomas [12].

Ne: oy, = 0,31, o, = 0,178, cz, = 0,849 € v, = 0, 082
Xe: oy, = 0,95, a, = 0,77, oy, = 1,014 €ty = 0,68
Al ay, = 0,67, an, = 0,44, oy, = 0,916 € vy, = 0, 222

Table 1. Thermal-creep flow: velocity profiléy), BGK model,2a = 1

Ne Xe Ar

v/a DE cL DE cL DE cL
00 | 1,96663(-1) 1,92295(-1f 1,70039(-1) 1,70138(~1)f 1,78803(-1)  1,75957(-1
02 | 1,00684(-1) 1,94052(-1f 1,67501(-1) 1,68025(-1)| 1,75256(-1) 1,74686(-1
04 | 1,81283(-1) 1,92527(~1) 1,60103(-1) 1,61237(-1) 1,67627(-1) 1,69138(-1
0,6 | 1,67406(-1) 1,87266(-1] 1,47402(-1) 1,48766(-1)] 1,54904(-1) 1,58442(-1
08 | 1,46528(-1) 1,76846(-1] 1,26036(-1) 1,27908(-1)] 1,34502(~1)  1,40219(-1
10 | 1,05366(-1) 1,53234(-1) 812923(-1) 8,39940(-1) 9,25639(-1)  1,01487(-1

Table 2. Thermal-creep flow: heat-flow profil&y), BGK model,2a = 1

Ne Xe Ar
y/a DE cL DE cL DE cL
00 | -9,24828(-1) -8,49847(-1) —7,87685(-1) —7,82379(-1) —8,49444(-1) —7,95456(-1
0,2 | —-9,06489(-1) -8,52612(-1) —7,79281(-1) —7,75553(-1) —8,37501(~1) —7,89891(-1
04 | —877749(-1) -8,43552(-1) —7,56150(-1) —7,53912(-1) —8,12911(-1) —7,69944(-1
06 | -834752(-1) -8,20334(-1) —7,14338(-1) —7,13625(-1) —7,71888(-1) —7,31978(~1
08 | —7,68318(-1) ~-7.76291(-1) —6,43387(-1) —6,44429(-1) —7,04812(-1) —6,66169(~1
10 | -6,31486(-1) —6,74377(-1] —4,87967(-1) -4,91807(-1} —5,61409(-1) —5,20247(-1
Table 3. Thermal-creep flow: flow rate of particlésBGK model
Ne Xe Ar
@ DE cL DE cL DE cL
0,1 | 832005(-1) 7,44537(-1) 5.66656(-1) 5,58912(~1) 6,74913(~1) 6,07628(-L
10 | 2,26824(-1) 2,26256(-1] 2,04387(-1) 2,06370(-1) 2,08640(-1)  2,10961(-1
10,0 | 2,22940(-2) 3,24119(-2) 3,17063(—2) 3,56128(-2) 2,38784(-2)  3,44004(-2
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Table 4. Thermal-creep flow: heat-flow rade BGK model

Ne Xe Ar
@ DE cL DE cL DE cL
01 | -455721 -3,60082 | —3,09562 -3,04326 | -3,72527 -3,13029
1,0 | -1,02901 -0,64696(-1] —9,05145(~1) —-9,00083(~1) —9,62584(~1) —9,13232(-1
10,0 | —1,22575(-1) -1,21770(~2) —-1,20018(-1) —1,20849(~1) —1,21692(-1) —1,21055(~1

Below are some graphs to illustrate the results obtainenl 31 t

In 1 and 2, we observe that the results are not sensitive twotbificients of tangential and normal accommodation. In
3, we notice that either in 3(a) or in 3(b) there is a simijabietween the curves when different scattering kernelssed u
(Maxwell and Cercignani-Lampis), showing that the resaftshe physical quantities are not sensitive to the boundary
conditions adopted, whe®, = « are considered.
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Figure 1. Thermal-creep flow - BGK model - Cercignani-Lammsindary condition - Velocity Profil&a = 1.
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Figure 3. Thermal-creep flow - BGK model - Diffuse speculad &ercignani-Lampis boundary conditiors; = 1,
an1 = 0,178 e o = 0, 082.

7. FINAL CONSIDERATIONS

The analytical version of the discrete-ordinates methadell on the quadrature scheme of the half-range type, was
used to develop the solution to the thermal-creep problethénrarefied gas dynamics, with the gas-surface interac-
tion through the kernels of Maxwell and Cercignani-Lampédking into consideration surfaces with different cherhica
compositions.
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The results based on the BGK model with boundary conditidmdaxwell did not present a significant difference as
compared to the results using the boundary conditions afi@Q®ani-Lampis.

The symmetry condition not used in this work, makes the aimlyf the behavior of rarefied gas dynamics more
flexible in the sense that one may vary the plates materiedsigih which the gas flows.
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