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Abstract. In this work, numerical results are presented for velocity and heat-flow profiles and particle and heat-flow rates
of a rarefied gas confined in a plane channel defined by two parallel plates subject to a temperature gradient. The problem
is modelled by the BGK kinetic equation and two different types of surface-gas interaction law are analyzed, i. e., the
Cercignani-Lampis model that is defined in terms of normal and tangential accommodation coefficients and the usual
Maxwell model. Here, the two parallel plates have differentchemical compositions, i. e., with different accommodation
coefficients. A modern analytical version of the discrete-ordinates method (ADO) is used to solve this problem and a
detailed analysis is performed in regard to the influence of the surfaces on the physical quantities.
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1. INTRODUCTION

Problems involving rarefied gas dynamics may be modeled by Boltzmann equation, which is initially approximated
by kinetic equations. In these problems, gas interactions with the surface play an important role inasmuch as the surface
temperature, its rugosity and chemical composition influence these interactions directly (gas-surface) leading to different
accommodation coefficients [4]. In mathematical models, boundary conditions take into account the type of surface
through scattering kernels. Among the different types of scattering kernels expressing different interactions between
gas and surface are: the scattering kernel of Maxwell [13], which considers the fraction(1 − α) of reflected particles
specularly and the remaining ones reflected diffusely, and the scattering kernel of Cercignani-Lampis [3], which features
two accommodation coefficients to better represent the physical properties of the surface: the accommodation coefficient
of the tangential momentum(αt) and the kinetic energy accommodation coefficient due to a normal velocity component
(αn). In recent studies, the Cercignani-Lampis kernel associated with the analytical method of discrete-ordinates was
used to solve a class of problems based on kinetic equations [6, 7] aiming to find results for the analysis of surface effects,
which are important for rarefied gas dynamics phenomena. Therefore, it is extremely important to consider different
accommodation coefficients. The purpose of this paper is to use the boundary conditions of Maxwell and Cercignani-
Lampis (which describe the gas-surface interaction) associated with the analytical method of discrete-ordinates (ADO)
[1] to find the solution to the Creep-Thermal problem, based on the BGK model [2], considering that the plates through
which the gas flows have different chemical compositions [5].

2. MATHEMATICAL FORMULATION

Take the written kinetic equation in terms of perturbationh(y, c) for a distribution function of a local Maxwellian as

cy
∂

∂y
h(y, c) + εh(y, c) = επ−3/2

∞∫

−∞

∞∫

−∞

∞∫

−∞

e−c′2F(c′, c)h(y, c′)dc′xdc′ydc′z + S(c), (1)

where the scattering kernel for the BGK model is given by

F(c′, c) = 1 + 2(c′ · c) + (2/3)(c′
2 − 3/2)(c2 − 3/2).

In addition, we consider the unidimensional case for the adimensional variable y (measurement in terms of mean-free
pathl), the components of the velocity vector(cx, cy, cz) expressed in adimensional units,

S(c) = −cx(c2
x + c2

y + c2
z − 5/2) e ε = σ2

0n0π
1/2l,

so thatσ0 is the diameter of the gas particles collision in the approximation of the rigid spheres andn0 is the density of
the gas particles balance.

In this work, two specific problems are investigated, both described by Eq. (1) and differentiated by boundary condi-
tions. For one of the problems, the boundary conditions of Maxwell are used and for the other, the Cercignani-Lampis
[4, 3] boundary conditions are used,respectively, given by

h(∓a, cx,±cy, cz) = αl

[
2czuwl +

Tw − T0

T0
(c2 − 2)

]
+ (1 − αl)h(∓a, cx,∓cy, cz)
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+
2αl

π

∫ 0

−∞
c′xdc′x

∫ ∞

−∞

∫ ∞

−∞
e−c′2h(∓a, c′x,∓c′y, c′z)dc′ydc′z, (2)

wherel = 1, 2 represents the walls of the channel,uwl is the plate velocity andT0 is the constant temperature of reference,
and

h(∓a, cx,∓cy, cz) =

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
h(∓a, c′x,∓c′y, c′z)Rl(c

′
x,∓c′y, c′z : cx,±cy, cz)dc′xdc′zdc′y, (3)

so that

Rl(c
′
x, c′y, c′z : cx, cy, cz) =

c′y
παnl

αtl
(2 − αtl

)
Tl(c

′
x : cx)Sl(c

′
y : cy)Tl(c

′
z : cz), (4)

Tl(x : y) = exp

[
− [(1 − αtl

)y − x]2

αtl
(2 − αtl

)

]

and

Sl(x : y) = exp

[
− [(1 − αnl

)1/2y − x]2

αnl

]
Î0

[
2(1 − αnl

)1/2|xy|
αnl

]
.

For computational effects, it is written as

Î0(w) = I0(w)e−w,

whereI0(w) is Bessel’s modified function

I0(w) =
1

2π

∫ 2π

0

ew cos φdφ.

Note that in Eq. (4) the kernel of Cercignani-Lampis includes two accommodation coefficients defined as accom-
modation coefficient of kinetic energy due to the normal component of velocity(αn ∈ [0, 1]) and the accommodation
coefficient of the tangential momentum(αt ∈ [0, 2]) [3, 4] . Physically, the Cercignani-Lampis kernel admits rear re-
flection which may occur on rugose surfaces. In the limit case, whenαt = 2 andαn = 0, the velocity changes signal
after colliding with a surface, thus changing its direction. Whenαt = 1 andαn = 1 the Cercignani-Lampis kernel (4)
coincides with a diffuse reflection. On the other hand, in thelimit caseαt = 0 andαn = 0 becoming a specular reflection.

To evaluate physical quantities Siewert [10] is followed, and for the velocity profile we get

u(y) = π−3/2

∞∫

−∞

∞∫

−∞

∞∫

−∞

e−c′2h(y, cx, cy, cz)cxdcxdcydcz (5)

and for the heat-flow profile

q(y) = π−3/2

∞∫

−∞

∞∫

−∞

∞∫

−∞

e−c′2h(y, cx, cy, cz)(c
2 − 5/2)cxdcxdcydcz. (6)

Taking into account the definition of physical quantities interms of momentums of functionh, we multiply Eq. (1)
respectively by

φ1(cx, cz) =
1

π
cxe−(cx

2+cz
2)

and

φ2(cx, cz) =
1

π
√

2
cx(cx

2 + cz
2 − 2)e−(cx

2+cz
2),

we integrate it in relation tocx andcz introducing a new notationξ = cy we define

h1(y, ξ) =

∫ ∞

−∞

∫ ∞

−∞
φ1(cx, cz)h(y, cx, ξ, cz)dcxdcz

and

h2(y, ξ) =

∫ ∞

−∞

∫ ∞

−∞
φ2(cx, cz)h(y, cx, ξ, cz)dcxdcz



Proceedings of ENCIT 2008
Copyright c© 2008 by ABCM

12th Brazilian Congress of Thermal Engineering and Sciences
November 10-14, 2008, Belo Horizonte, MG

and we find the equations

ξ
∂

∂y
h1(y, ξ) + h1(y, ξ) = π−1/2

∫ ∞

−∞
e−ξ′2

h1(y, ξ′)dξ′ − 1

2
(7)

and

ξ
∂

∂y
h2(y, ξ) + h2(y, ξ) = 0. (8)

3. A VECTORIAL FORMULATION

ConsideringH(y, ξ) a vector with componentsh1(y, ξ) andh2(y, ξ) we may rewrite Eq. (7) and (8) in the vectorial
form as

ξ
∂

∂y
H(y, ξ) + H(y, ξ) =

∫ ∞

−∞
Ψ(ξ′)H(y, ξ′)dξ′ + S∗(ξ), (9)

where

Ψ(ξ′) = π−1/2e−ξ′2

Q, (10)

Q =

[
1 0
0 0

]
, H(y, ξ) =

[
h1(y, ξ)
h2(y, ξ)

]
and S∗(ξ) =

[ − 1
2ξ2 + 1

4
− 1√

2

]
.

The methodology used to obtain Eq. (9) is also applied to the boundary conditions. Therefore, for the boundary
conditions of Maxwell, Eq. (2) we find the equation in the vectorial form

H(∓a,±ξ) = (1 − αl)H(∓a,∓ξ). (11)

For the boundary conditions of Cercignani-Lampis, Eq. (3) we have

H(∓a,±ξ) = Al

∫ ∞

0

H(∓a,∓ξ′)fl(ξ
′, ξ)dξ′, (12)

where

Al =

[
1 − αtl

0
0 (1 − αtl

)3

]
(13)

and

fl(ξ
′, ξ) =

2ξ′

αnl

exp

[
− [(1 − αnl

)1/2ξ − ξ′]2

αnl

]
Î0

[
2(1 − αnl

)
1/2

ξ′ξ

αnl

]
, (14)

with l = 1, 2.
Based on the vectorial notation, we can express physical quantities , Eqs (5) and (6) as

u(y) = π−1/2

∫ ∞

−∞
e−ξ2

[1 0]H(y, ξ)dξ (15)

and

q(y) = π−1/2

∫ ∞

−∞
e−ξ2

[
(ξ2 − 1/2)

√
2
]
H(y, ξ)dξ, (16)

which respectively represent the velocity profile and the heat-flow profile.
In addition to these physical quantities, we also evaluate the flow rate of particles

U =
1

2a2

∫ a

−a

u(y)dy (17)

and the heat-flow rate

Q =
1

2a2

∫ a

−a

q(y)dy. (18)
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4. DEVELOPING THE SOLUTION

The problem defined by Eq. (9) is non-homogeneous, thereforeits solution is written as follows

H(y, ξ) = Hh(y, ξ) + Hp(y, ξ). (19)

As for the homogeneous problem, a particular solution is found

Hp(y, ξ) =

[ − 1
2ξ2 + 1

4
− 1√

2

]
.

Substituting Eq. (19) in Eqs. (9), (11) and (12), we concludethat the homogeneous solution must satisfy equation

ξ
∂

∂y
Hh(y, ξ) + Hh(y, ξ) =

∫ ∞

−∞
Ψ(ξ′)Hh(y, ξ′)dξ′, (20)

the boundary conditions of Maxwell

Hh(∓a,±ξ) − (1 − αl)H
h(∓a,∓ξ) = R∗

l (ξ) (21)

and the boundary conditions of Cercignani-Lampis

Hh(∓a,±ξ) − Al

∫ ∞

0

Hh(∓a,∓ξ′)fl(ξ
′, ξ)dξ′ = Rl(ξ), (22)

whereΨ(ξ′) is given by Eq. (10),

R∗
l (ξ) = (1 − αl)H

p(∓a,∓ξ) − Hp(∓a,±ξ) (23)

and

Rl(ξ) = Al

∫ ∞

0

Hp(∓a,∓ξ′)fl(ξ
′, ξ)dξ′ − Hp(∓a,±ξ). (24)

Here,Al efl(ξ
′, ξ) are given by Eqs. ( 3.5 ) and ( 3.6 ), respectively.

Note thatl in Eqs. (21)-(24) assumes values (quantities?) 1 or 2, representing the channel walls.

4.1 A discrete-ordinates solution

We solve the homogeneous problems, Eqs. (20)-(22), throughthe analytical method of discrete-ordinates. In this
sense, we define the quadrature scheme and rewrite the Eq. (19) in the discrete-ordinates version as

±ξi
d

dy
Hh(y,±ξi) + Hh(y,±ξi) =

N∑

k=1

ωkΨ(ξk)[Hh(y, ξk) + Hh(y,−ξk)]. (25)

For Eqs. (25), the following solutions are proposed

Hh(y,±ξ) = Φ(ν,±ξ) e−y/ν

and after substituting in Eq. (25), we find

(ν ∓ ξi)Φ(ν,±ξi) = ν

N∑

k=1

ωkΨ(ξk)[Φ(ν, ξk) + Φ(ν,−ξk)].

Now we have vectorsΦ+(ν) andΦ−(ν) of 2N×1 dimension, withN components2×1, respectively defined byΦ(ν, ξk)
andΦ(ν,−ξk). Writing

U = Φ+(ν) + Φ−(ν)

and after some algebraic manipulations we find the problem ofself-values, with self-values1/ν2, thus obtaining the values
of the separation constantν. Therefore, the solution in discrete-ordinates for the homogeneous equation is given by

Hh
±(y) = A1Φ

1 + B1Φ
2
± +

2N∑

j=2

[AjΦ±(νj)e
−(a+y)/νj + BjΦ∓(νj)e

−(a−y)/νj ], (26)
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where we introduce the exact solutionsΦ1 andΦ2
± of dimensions2N×1, respectively defined byN (vectors) components

of the form

F1 =

[
1
0

]
e F2

±(y) =

[
y ∓ ξ

0

]
. (27)

Now, aiming to find the physical quantities, taking into account rarefied gases confined between parallel plates with
different chemical compositions,we do not use the symmetrycondition,H(y, ξ) = H(−y,−ξ), here as it was used in
Knackfuss and Barichello [6]. This fact is directly reflected in the number of arbitrary constants present in the solution
of the homogeneous problems, that is, analytically we obtain a square algebraic system of4N order, differently from the
2N system obtained in Knackfuss and Barichello [6].

To determine the arbitrary constantsAj andBj , j = 1, . . . , 2N for the boundary conditions of Maxwell case, we
substitute the Eqs. (26) in Eq. (21) and for the conditions ofCercignani- Lampis case, we substitute the Eq. (26) in Eq.
(22) obtaining two systems of linear algebraic equations.

Finally, we find the complete solution

H±(y) = H
p
±(y) + A1Φ

1 + B1Φ
2
± +

2N∑

j=2

[AjΦ±(νj)e
−(a+y)/νj + BjΦ∓(νj)e

−(a−y)/νj ]. (28)

Here,Hp
±(y) = Hp(y,±ξk) denotes a vector2N × 1 with N components2 × 1.

5. PHYSICAL QUANTITIES OF INTEREST

To obtain physical quantities in the discrete-ordinates version, we substitute Eq. (28) in Eqs. (15)-(18).
The following definitions are used next

N(νj) = [ω1Λ(ξ1) ω2Λ(ξ2) · · · ωNΛ(ξN )][Φ+(νj) + Φ−(νj)]

with componentsN1(νj) andN2(νj), where

Λ(ξ) = π−1/2e−ξ2

[
1 0

ξ2 − 1/2
√

2

]

and the expressions

M(y) = Aj e−(a+y)/νj

Q(y) = Bj e−(a−y)/νj

O(y) = Aj νj (1 − e−(2a)/νj )
P (y) = Bj νj (1 − e−(2a)/νj )

to write:
velocity profile

u(y) = A1 + B1y +

2N∑

j=2

[
Mj(y) + Qj(y)

]
N1(νj);

heat-flow profile

q(y) = −5

4
+

2N∑

j=2

[
Mj(y) + Qj(y)

]
N2(νj);

flow rate of particles

U =
1

2a2

[
2aA1 +

2N∑

j=2

[
Oj(y) + Pj(y)

]
N1(νj)

]
;

heat-flow rate

Q =
1

2a2

[
− 5a

2
+

2N∑

j=2

[
Oj(y) + Pj(y)

]
N2(νj)

]
.
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6. NUMERICAL RESULTS

To find numerical results, the computational implementation was developed through FORTRAN language programs.
Initially, the quadrature scheme is defined in association with the analytical method of discrete-ordinates (ADO) to im-
plement solutions. For a lot of problems in the rarefied gas dynamics, the following procedure has proved to be adequate
[5, 7]. Aiming to calculate the integrals in the interval[0,∞), we use the non-linear transformation

u(ξ) = e−ξ

to mapξ ∈ [0,∞) underu ∈ [0, 1], and then the quadrature scheme of Gauss-Legendre linearlymapped in the interval
[0, 1] is used. The next step is to determine the self-values (constants of separation) and self-vectors. Lastly, we find the
arbitrary constants so as to obtain the physical quantitiesof interest.

Results are shown in Tables 1 to 4 and in Figures 1 to 3 for different gases obtained withN = 60 quadrature points.
The numbers in brackets in these tables represent powers of ten. DE and CL notations represent diffuse- specular boundary
conditions (Maxwell) and boundary conditions of Cercignani-Lampis, respectively. In the kinetic equation , given by Eq.
(1), the parameterε was considered arbitrary. In the case of the BGK model, whenε is evaluated in terms of viscosity or
thermal conductivity, its value is equal to 1, that is,ε = εp = εt = 1.

To obtain the numerical results shown in the tables and graphs coming up next, the following gases are considered:
Ne ( Neon ), Xe (Xenon) and Ar (Argon). The values for the coefficients of tangential accommodation(αt1) and accom-
modation coefficient(α1) for surface 1, are formulated in terms of experimental values given by Lord [8]. For surface 2,
the coefficient values(αt2 andα2) were reproduced from Sharipov [9] who follows the experimental work of Porodnov
et al [11].

In relation to the normal accommodation coefficient (αn1
eαn2

), as far as we know, experimental results do not exist,
therefore numerical values are chosen based on the thermal accomomodation coeffient of the gases listed above, presented
in the work of Thomas [12].

Ne: αt1 = 0, 31, αn1
= 0, 178, αt2 = 0, 849 eαn2

= 0, 082
Xe: αt1 = 0, 95, αn1

= 0, 77, αt2 = 1, 014 eαn2
= 0, 68

Ar: αt1 = 0, 67, αn1
= 0, 44, αt2 = 0, 916 eαn2

= 0, 222

Table 1. Thermal-creep flow: velocity profileu(y), BGK model,2a = 1

Ne Xe Ar
y/a

DE CL DE CL DE CL

0,0 1,96663(–1) 1,92295(–1) 1,70039(–1) 1,70138(–1) 1,78803(–1) 1,75957(–1)
0,2 1,90684(–1) 1,94052(–1) 1,67501(–1) 1,68025(–1) 1,75256(–1) 1,74686(–1)
0,4 1,81283(–1) 1,92527(–1) 1,60103(–1) 1,61237(–1) 1,67627(–1) 1,69138(–1)
0,6 1,67406(–1) 1,87266(–1) 1,47402(–1) 1,48766(–1) 1,54904(–1) 1,58442(–1)
0,8 1,46528(–1) 1,76846(–1) 1,26036(–1) 1,27908(–1) 1,34502(–1) 1,40219(–1)
1,0 1,05366(–1) 1,53234(–1) 8,12923(–1) 8,39940(–1) 9,25639(–1) 1,01487(–1)

Table 2. Thermal-creep flow: heat-flow profileq(y), BGK model,2a = 1

Ne Xe Ar
y/a DE CL DE CL DE CL

0,0 –9,24828(–1) –8,49847(–1) –7,87685(–1) –7,82379(–1) –8,49444(–1) –7,95456(–1)
0,2 –9,06489(–1) –8,52612(–1) –7,79281(–1) –7,75553(–1) –8,37501(–1) –7,89891(–1)
0,4 –8,77749(–1) –8,43552(–1) –7,56150(–1) –7,53912(–1) –8,12911(–1) –7,69944(–1)
0,6 –8,34752(–1) –8,20334(–1) –7,14338(–1) –7,13625(–1) –7,71888(–1) –7,31978(–1)
0,8 –7,68318(–1) –7,76291(–1) –6,43387(–1) –6,44429(–1) –7,04812(–1) –6,66169(–1)
1,0 –6,31486(–1) –6,74377(–1) –4,87967(–1) –4,91807(–1) –5,61409(–1) –5,20247(–1)

Table 3. Thermal-creep flow: flow rate of particlesU , BGK model

Ne Xe Ar
a

DE CL DE CL DE CL

0,1 8,32005(–1) 7,44537(–1) 5,66656(–1) 5,58912(–1) 6,74913(–1) 6,07628(–1)
1,0 2,26824(–1) 2,26256(–1) 2,04387(–1) 2,06370(–1) 2,08640(–1) 2,10961(–1)
10,0 2,22940(–2) 3,24119(–2) 3,17063(–2) 3,56128(–2) 2,38784(–2) 3,44094(–2)



Proceedings of ENCIT 2008
Copyright c© 2008 by ABCM

12th Brazilian Congress of Thermal Engineering and Sciences
November 10-14, 2008, Belo Horizonte, MG

Table 4. Thermal-creep flow: heat-flow rateQ, BGK model

Ne Xe Ar
a

DE CL DE CL DE CL

0,1 –4,55721 –3,60082 –3,09562 –3,04326 –3,72527 –3,13029
1,0 –1,02991 –9,64696(–1) –9,05145(–1) –9,00083(–1) –9,62584(–1) –9,13232(–1)
10,0 –1,22575(–1) –1,21770(–2) –1,20918(–1) –1,20849(–1) –1,21692(–1) –1,21055(–1)

Below are some graphs to illustrate the results obtained, 1 to 3.
In 1 and 2, we observe that the results are not sensitive to thecoefficients of tangential and normal accommodation. In

3, we notice that either in 3(a) or in 3(b) there is a similarity between the curves when different scattering kernels are used
(Maxwell and Cercignani-Lampis), showing that the resultsof the physical quantities are not sensitive to the boundary
conditions adopted, whenαt = α are considered.

(a) αt1 = 0, 31, αt2 = 0, 849 (b) αn1 = 0, 178, αn2 = 0, 082

Figure 1. Thermal-creep flow - BGK model - Cercignani-Lampisboundary condition - Velocity Profile,2a = 1.

(a) αt1 = 0, 31, αt2 = 0, 849 (b) αn1 = 0, 178, αn2 = 0, 082

Figure 2. Thermal-creep flow - BGK model - Cercignani-Lampisboundary condition - Heat-flow profile,2a = 1.

(a) Perfil de Velocidade (b) Perfil de Fluxo de Calor

Figure 3. Thermal-creep flow - BGK model - Diffuse specular and Cercignani-Lampis boundary conditions,2a = 1,
αn1 = 0, 178 eαn2 = 0, 082.

7. FINAL CONSIDERATIONS

The analytical version of the discrete-ordinates method, based on the quadrature scheme of the half-range type, was
used to develop the solution to the thermal-creep problem inthe rarefied gas dynamics, with the gas-surface interac-
tion through the kernels of Maxwell and Cercignani-Lampis,taking into consideration surfaces with different chemical
compositions.
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The results based on the BGK model with boundary conditions of Maxwell did not present a significant difference as
compared to the results using the boundary conditions of Cercignani-Lampis.

The symmetry condition not used in this work, makes the analysis of the behavior of rarefied gas dynamics more
flexible in the sense that one may vary the plates materials through which the gas flows.
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