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Abstract. The analytical solution of linear diffusion problems within  heterogeneous media requires the computational 
solution of an eigenvalue problem defined with space variable thermophysical properties. Thus, the GITT is here 
utilized to handle Sturm-Liouville problems with arbitrarily variable coefficients, by defining eigenfunction expansions 
in terms of an auxiliary problem of known solution. In addition, the representation of the variable coefficients as 
eigenfunction expansions themselves, considerably simplifies and accelerates the integral transformation process, by 
permitting the analytical evaluation of the coefficients matrices that form the  transformed algebraic system. The 
proposed methodology is challenged in solving two different classes of eigenvalue problems in heterogeneous media, 
as illustrated for the cases of abrupt variations in double layer transitions and of randomly generated distribution 
functions for the equation coefficients. The convergence behavior of the obtained expansions is then critically 
inspected and numerical results are presented to offer a set of reference results for eigenvalues and related quantities.  
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1. INTRODUCTION 
 

Diffusion problems defined in heterogeneous media involve spatially variable coefficients in different forms, 
depending on the type of heterogeneity involved, such as large scale variations in functionally graded materials (FGM), 
abrupt variations in layered composites, and random variations due to local concentration fluctuations in dispersed 
phase systems, (Lin, 1992), (Qiulin et al., 1999), (Danes et al, 2003). In all such situations, the accurate representation 
of the diffusion process requires a detailed local solution of the potential behavior, generally with the aid of discrete 
numerical solutions with sufficient mesh refinement and computational effort and/or semi-analytical approaches for 
specific or simplified functional forms, as discussed in (Lin, 1992), (Divo & Kassab, 1998), (Fudym et al., 2002), 
(Sutradhar et al., 2002), (Jiang & Sousa, 2007), (Dai et al., 2007).  

Analytical solutions of linear diffusion problems have been analyzed and compiled in (Mikhailov & Ozisik, 
1984), where seven different classes of heat and mass diffusion formulations are systematically solved by the classical 
Integral Transform Method. The obtained formal solutions are applicable over a very broad range of problems in heat 
and mass transfer, in part illustrated in the referred compendium, including certain examples of diffusion in 
heterogeneous media. Later on, the classical approach gained a hybrid numerical-analytical implementation and was 
coined as the Generalized Integral Transform Technique (GITT), (Cotta, 1993), (Cotta & Mikhailov, 1997), (Cotta, 
1998), (Cotta & Mikhailov, 2006), offering more flexibility in handling a priori non-transformable problems, including, 
among others, the analysis of nonlinear diffusion and convection-diffusion problems, (Cotta, 1990). 

The solution of the associated eigenvalue problem is the major task in the numerical computation of such 
formal solutions presently available, so as to provide accurate numerical values for the related eigenvalues and 
normalized eigenfunctions that compose the expansions inherent to the integral transform method. In a number of 
situations, depending on the specific functional form of the equation coefficients, one may find explicit solutions for the 
eigenfunctions in terms of special functions which are well documented in textbooks, and more recently, readily 
available in symbolic computation packages (Wolfram, 2005). On the other hand, for the more general formulation of 
the eigenvalue problem, a few computational approaches have been developed that offer numerical approximations of 
the eigenvalues and eigenfunctions, such as the Runge-Kutta method with Pruffer transformation, (Bailey et al., 1978), 



(Bailey et al., 1991), the Sign-count method, (Mikhailov & Vulchanov, 1983), (Cotta & Nogueira, 1988), and the GITT 
itself , (Mikhailov & Cotta, 1994), (Oliveira et al., 1995), (Sphaier & Cotta, 2000).  

The GITT has been applied to both the case of variable coefficients (Mikhailov & Cotta, 1994), and irregular 
domains (Sphaier & Cotta, 2000), and has been recently challenged to handle problems with arbitrary space variations, 
including large scale and abrupt changes in thermophysical properties due to transition of different materials (Naveira et 
al., 2008). The approach was first applied in solving an example of spatially variable thermophysical properties found in 
heat conduction within functionally graded materials (FGM), validated by the exact solution obtained through classical 
integral transforms in the specific situation of exponentially varying coefficients. Then, the approach is employed for 
handling a double-layered system with abrupt variation of properties, and critically compared against the exact solution 
obtained by the classical integral transform method with the adequate discontinuous multi-region eigenvalue problem. 
The idea is to propose expansions for the desired eigenfunctions themselves, based on an auxiliary problem of known 
solution. Then, the integral transformation process as applied to the original Sturm-Liouville problem, yields an 
algebraic transformed system of equations, written as a matrix eigensystem analysis. The numerically computed matrix 
eigenvalues and eigenvectors allow the reconstruction of the original problem eigenfunctions, which are actually needed 
in the analytical solution of the proposed diffusion problem. 

The present work extends the contribution in (Naveira et al., 2008) and considers the possibility of expressing 
the variable coefficients themselves as eigenfunction expansions, not necessarily of the same auxiliary eigenvalue 
problem. This will be particularly advantageous in the evaluation of the algebraic system coefficients matrices, which 
result from the integration transformation process. All the related integrals can then be expressed in terms of simple 
eigenfunctions, in general allowing for straightforward analytical evaluations, instead of costly numerical integrations, 
especially for multidimensional applications. The present methodology can thus be particularly suitable in properties 
identification tasks and optimization for material properties tailoring. Here, the approach employing the expanded 
coefficients is challenged to handle the same double-layer abrupt variation situation considered in (Naveira et al., 2008), 
and then demonstrated for a situation of intense random variation of the equation coefficients along the space variable, 
such as in (Lin, 1992). After demonstrating the convergence behavior of the related eigenquantities, the random 
variation case is critically examined against the approximation of effective thermophysical properties values for a range 
of amplitudes in the maximum variation allowed for. 

 
2. ANALYSIS 
 

We consider a general formulation on transient diffusion for the potential  dependent on position x and 
time t and defined in region V with boundary surface S. The formulation includes the transient term, the diffusion 
operator, a linear dissipation term, and an independent source term, (Mikhailov & Ozisik, 1984), Cotta(1993), as shown 
in problem (1) below. The coefficients  are responsible for the information related to the 
heterogeneity of the medium. The diffusion equation and initial and boundary conditions are given by :  

( , ),T tx

( ), ( ), and ( ),w k dx x x
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The exact solution of problem (1) is obtained with the Classical Integral Transform Method, (Mikhailov & 

Ozisik, 1984), and is written as: 
 

2 2 ( )́

0
1

( , ) ( )( ( ) ´)i i
tt t

i i i
i

T t f e g t e dt
∞

− − −

=

= +∑ ∫x x μ μψ t                                                            (2) 

 
where the eigenvalues μi and eigenfunctions ( )i xψ , are obtained from the eigenvalue problem that contains the 
information about the heterogeneous medium, in the form: 
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Also, the other quantities that appear in the exact solution (2) are computed after solving problem (3), such as:  
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For a general purpose automatic implementation, it is quite desirable to develop a flexible computational 
approach to handle eigenvalue problems with arbitrarily variable coefficients, such as problem (3). Thus, the 
Generalized Integral Transform Technique (GITT) is here employed in the solution of the Sturm-Liouville problem (3) 
via the proposition of a simpler auxiliary eigenvalue problem, and expanding the unknown eigenfunctions in terms of 
the chosen basis. Also, the variable equation coefficients are themselves expanded in terms of known eigenfunctions, so 
as to allow for a fully analytical implementation of the coefficients matrices in the transformed system. The solution of 
problem (3) is thus proposed as an eigenfunction expansion, in terms of a simpler auxiliary eigenvalue problem, given 
as: 

 
* * *2.[ ( ) ( )] ( ( ) ( )) ( ) 0,n n nk w dλ∇ ∇Ω + − Ω = ∈x x x x x x                                              (5a) 

with boundary conditions 
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n
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where the coefficients  are simpler forms of the equation coefficients, chosen to allow for an 
analytical solution of the auxiliary problem. Also, the boundary conditions types of the original and auxiliary problems 
are allowed to be different, in case further simplification of the auxiliary function is desired, in light of the different 
boundary condition coefficients, and .  

* * *( ), ( ), ( ),w k and dx x x

*( )xα *( )xβ
The proposed expansion of the original expansion is then given by: 
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The integral transformation is thus performed by operating eq.(3a) on with ( )n

V

dvΩ −∫ x . After employing Green´s 2nd 

formula so as to account for the difference in boundary conditions of the two eigenvalue problems, it results: 
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Now, by combining boundary conditions (3b) and (5b), the surface integral above can be written as: 
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and eq.(7a) can be for instance rewritten as: 
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Substitution of the inverse formula yields the following algebraic problem: 
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In matrix form, the eigensystem is concisely given by: 
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Also, accounting for the auxiliary problem formulation, the system matrix A can be rewritten as: 
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The algebraic problem (8) can be numerically solved to provide results for the eigenvalues and eigenvectors, 

which will be combined  by the inverse formula (6a) to provide the desired eigenfunctions.  
It is also relevant to consider the possibility of expressing the variable coefficients themselves as eigenfunction 

expansions, in general not of the same auxiliary eigenvalue problem. This is particularly advantageous in the evaluation 
of the algebraic system coefficients, An,m and BBn,m. All the related integrals can then be expressed in terms of 
eigenfunctions, in general allowing for straightforward analytical evaluations. For instance, the coefficient w(x) can be 
expanded in terms of eigenfunctions, together with a filtering solution to enhance convergence, in the following form: 
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where  is the weighting function for the chosen normalized eigenfunction . For instance, the eigenfunction 
basis may be chosen employing the same auxiliary problem equation, but with first order boundary conditions 
throughout, while the filtering function would be a simple analytic function that satisfies the boundary values for the 
original coefficients. Then, once the transformed coefficients have been obtained through the transform formula, 
eq.(9b), computations may be carried on with the inverse expression for the variable coefficient, eq.(9a). This procedure 
might also be of interest in function estimation tasks, when the transformed quantities would be the parameters to be 
estimated. The two remaining coefficients are equally expanded, if necessary, in terms of eigenfunctions, here assumed 
to be equal just for the sake of conciseness, to yield: 
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The matrices coefficients may then be rewritten in terms of the expanded functions, such as for the elements of 

matrix B: 
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The norms are then computed from: 
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3. APPLICATIONS 
 

The problems here considered involve the analysis of two quite different situations, one related with an abrupt 
variation of thermophysical properties, typical of the transition between two materials layers (Orlande et al., 2008), and 
the second associated with random variation of the thermophysical properties, (Lin, 1992). The problem formulation in 
both cases is given by: 
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The initial condition is arbitrarily chosen as f(x)=1-x2 for the present illustration. The space variable 

coefficients for the abrupt variation are governed by the parameter γ in the function below 
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with xc being the interface position.  
The randomly generated coefficients were obtained based on the example of (Lin, 1992), by first generating a 

number of positions within the medium, and then producing random scaling factors for the properties variations at each 
position, normalized by their average value. The resulting values are then interpolated to provide continuous functions.  
A gain parameter is also defined to allow for an inspection of the accuracy of effective thermophysical properties in 
simplifying the problem formulation, as shall be discussed in the results and discussion section. The variable 
coefficients are the given by: 
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where g1 (x) and g2 (x) are the linearly interpolated functions of the properties values, randomly generated in the interval 
[0,1] within selected positions x, and 1 and 2g g  are the corresponding average values of these two functions. The 
constant factor G reflects the extent of the effects of random numbers on the two thermal properties functions 

. For instance, with G=1 one obtains the full random pattern of the generated functions, while G=0 
recovers the uniform thermophysical properties situation. The eigenvalue problem to be solved is then given by: 

( ) and ( )k x w x
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So as to demonstrate the potential applicability of the present approach, the simplest possible auxiliary problem 

was considered, based on the choice of coefficients k*(x)=1, w*(x)=1, and d*(x)=0, and maintaining the same boundary 
conditions as in eqs.(17b,c), which results in: 
 

 0( ) 2 ( ), and ( ) 1, with , 0,1,2...n n nx cos x x n nΩ = λ Ω = λ = π =                                    (18a-c) 
 
4. RESULTS AND DISCUSSION 
 

Before proceeding to the solution of the Sturm-Liouville problem for such heterogeneous media examples, we 
illustrate the convergence of the eigenfunction expansion representations of the variable coefficients themselves, in each 
case. For instance, Figures 1.a,b illustrate the behavior of the variable coefficient k(x) for the double-layer example, 
together with its eigenfunction expansion, with k1=1, k2=20, xc=0.3, and for different values of the parameter γ = 20 and 
200. To the graph scale, the value γ=200 produces a practically vertical variation on the thermophysical properties. We 
have chosen to adopt as a filter the straight line that connects the two extreme values, k(0) and k(1), not accounting for 
the knowledge of the interface position. The eigenfunction was taken from the same auxiliary problem equation, but 
with first kind boundary conditions, i.e.: 
 

 ( ) 2 ( ), with , 1,2,3...k k kx sin x k kΓ = ν ν = π =                                            (18a-c) 
 

  
Figure 1.a– Behavior of the variable diffusion 

coefficient k(x) and its eigenfunction expansion for the 
double-layer example, with γ=20 and truncation 

orders N=3, 6, and 9. 

Figure 1.b– Behavior of the variable diffusion 
coefficient k(x) and its eigenfunction expansion for the 

double-layer example, with γ=200 and truncation 
orders N=10, 30, and 70. 

 
For the case with the less abrupt space variation, Fig.1.a, convergence of the coefficient expansion is achieved 

to the graph scale with very low truncation orders, such as N=9 (dark blue) which overwrites the red curve for the 
original coefficient, eq.(15a) .For the case of an actual abrupt variation, Fig.1.b, a larger number of terms were required 
for the expansion to appropriately recover the coefficient behavior, as illustrated by the curve with N=70, which is 
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practically coincident with the continuous curve in red which is not visible, being overwritten by the dark blue curve 
(N=70). 

Similar results were obtained and analyzed for the random properties example, as illustrated below in Figures 
2.a,b for the k(x) coefficient by taking k0=0.5, with G=0.2 and 0.8. A total of 40 equally spaced points were taken along 
the domain for the random properties generation, while the random numbers at each position were kept unchanged for 
the two cases of different gains. The truncation orders for the coefficient expansion are illustrated for N=20, 40, and 80. 
Clearly, the case with the smaller gain, G=0.2, presents a better convergence behavior, due to the dumping effect on the 
oscillations amplitudes, with the results for N= 80 being fully coincident with the interpolated original curves in black 
that are overwritten by the red curve (N=80). For the case with larger amplitudes in the random variations, G=0.8, the 
curve for N=40 still presents noticeable deviations from the original interpolated curve, while the red curve for N=80 
practically overwrites the original coefficient in black, except at the very sharp edges which would still require a few 
extra terms. The same trends were observed for the randomly generated w(x) behavior, generated for w0=0.5 and also 
for 40 equally spaced points, as illustrated in Figures 3.a,b below. As opposed to the case in (Lin, 1992), the two 
coefficients were allowed to be independently generated, to further challenge the proposed approach. 
 

  
Figure 2.a– Behavior of the variable diffusion 

coefficient k(x) and its eigenfunction expansion for the 
random properties example, with G=0.2 and 

truncation orders N=20, 40, and 80. 

Figure 2.b– Behavior of the variable diffusion 
coefficient k(x) and its eigenfunction expansion for the 

random properties example, with G=0.8 and 
truncation orders N=20, 40, and 80. 

 

  
Figure 3.a– Behavior of the variable diffusion 

coefficient w(x) and its eigenfunction expansion for the 
random properties example, with G=0.2 and 

truncation orders N=20, 40, and 80. 

Figure 3.b– Behavior of the variable diffusion 
coefficient w(x) and its eigenfunction expansion for the 

random properties example, with G=0.8 and 
truncation orders N=20, 40, and 80. 

 
The eigenvalue problem solution is now demonstrated, first by considering the double-layer example, again 

with k1=1, k2=20, xc=0.3, w1=1 and w2=4, with γ =20 and 200. Tables 1.a,b then show the converged values of the first 
ten eigenvalues μi´s for different truncation orders in the coefficients expansions, N, compared in the last two columns 
with the original continuous function behavior and the exact discontinuous eigenvalue problem solution, here shown 
just as a limiting case (Naveira et al., 2008). The eigenfunction expansions were fixed to truncation orders M=50 in the 
case of γ =20, and M=100 for γ =200, which are more than sufficient to provide converged results to the first ten 
eigenvalues here presented, as achieved for the original coefficients representation in (Naveira et al., 2008). In Table 
1.a, for the smoother coefficients behavior, fairly low truncation orders (N=27) in the coefficients expansions already 



provides four significant digits of convergence in the first ten eigenvalues, as compared to the eigenvalues obtained 
with the numerical integration based on the original coefficients representations. On the other hand, for the very abrupt 
variation case, for γ =200, it is shown in Table 1.b that N=90 terms are required to yield four fully converged significant 
digits in these same first ten eigenvalues. It is also evident that the results in Table 1.b are now much closer to the exact 
solution of the discontinuous case (Naveira et al., 2008), as the coefficients representation approach constant values in 
each layer. 
 
Table 1.a – Influence of the coefficients expansion order on the eigenvalues for double-layer problem and γ=20. 

Order i N=3 N=9 N=15 N=21 N=27 Original 
Coefficients 

Discontinuous
Problem 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

7.86217 
12.8587 
18.8689 
24.9545 
31.0633 
37.1900 
43.3268 
49.4702 
55.6181 
61.7694 

7.55814 
11.0763 
18.1683 
23.6561 
29.2863 
35.0534 
40.8122 
46.5966 
52.3889 
58.1812 

7.58512 
11.1109 
18.1250 
23.4347 
29.1625 
34.9998 
40.6868 
46.4962 
52.2518 
58.0240 

7.58441 
11.1094 
18.1222 
23.4324 
29.1714 
35.0180 
40.6945 
46.4989 
52.2658 
58.0518 

7.58398 
11.1088 
18.1209 
23.4276 
29.1646 
35.0151 
40.7094 
46.5245 
52.2762 
58.0539 

7.58283 
11.1073 
18.1192 
23.4233 
29.1589 
35.0040 
40.6934 
46.5102 
52.2744 
58.0618 

5.21316 
10.0779 
15.6389 
20.1568 
26.0627 
30.238 
36.4832 
40.3228 
46.8986 
50.4129 

 
Table 1.b – Influence of the coefficients expansion order on the eigenvalues for double-layer problem and γ=200. 

Order i N=10 N=30 N=50 N=70 N=90 Original 
Coefficients 

Discontinuous
Problem 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

6.46777 
9.35032 
11.9257 
17.1314 
20.0420 
26.0591 
30.3240 
36.1541 
40.9689 
46.6208 

3.84373 
10.0036 
13.4899 
19.9054 
24.4230 
29.7795 
35.8098 
39.6127 
49.2159 
50.6779 

5.35180 
10.0759 
16.0827 
20.1559 
26.7905 
30.2563 
37.4216 
40.3890 
47.9487 
50.5490 

5.43558 
10.0800 
16.2949 
20.1772 
27.1017 
30.3164 
37.8060 
40.5337 
48.3579 
50.8692 

5.44368 
10.0805 
16.3144 
20.1793 
27.1296 
30.3214 
37.8413 
40.5439 
48.3992 
50.8904 

5.44376 
10.0805 
16.3139 
20.1794 
27.1284 
30.3213 
37.8402 
40.5431 
48.3994 
50.8882 

5.21316 
10.0779 
15.6389 
20.1568 
26.0627 
30.238 
36.4832 
40.3228 
46.8986 
50.4129 

 
Now, the random properties case is more closely examined, initiating by the illustration of the convergence 

behavior of the first ten eigenvalues for a fixed order in the coefficients expansion (N=60) but with increasing order in 
the eigenfunction expansion (M<150). The aim is to demonstrate that the proposed approach is capable of reaching 
convergence on the eigenvalues of such a variable coefficients behavior for the worst case of G=1, to within reasonable 
values of the expansion orders. As can be observed in Table 2 below, at least four significant digits are fully converged 
within the first ten eigenvalues, in the present range of truncation orders for the original problem eigenfunction 
expansion (M). 
 

Table 2 – Convergence of the first ten eigenvalues for random properties case, with G=1 and N=60. 
Order i M=30 M=50 M=70 M=90 M=110 M=130 M=150 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

2.90207 
5.23384 
8.10109 
11.0147 
14.2049 
18.0462 
21.7980 
23.8627 
26.1779 
28.0186 

2.81610 
5.10513 
7.98097 
10.7324 
13.7071 
17.5109 
21.3897 
22.7361 
25.4687 
27.1276 

2.79202 
5.03219 
7.92827 
10.6851 
13.5311 
17.4131 
21.3193 
22.5215 
25.2890 
26.9681 

2.78723 
5.02071 
7.92255 
10.6721 
13.4519 
17.3517 
21.2939 
22.3882 
25.2408 
26.9264 

2.78543 
5.01469 
7.92061 
10.6689 
13.4224 
17.3373 
21.2905 
22.3555 
25.2231 
26.9131 

2.78468 
5.01261 
7.92003 
10.6669 
13.4082 
17.3297 
21.2893 
22.3438 
25.2162 
26.9092 

2.78438 
5.01180 
7.91992 
10.6664 
13.4039 
17.3277 
21.2889 
22.3379 
25.2133 
26.9077 

 
In addition, the influence of the coefficients expansions truncation orders (N) on the behavior of the 

eigenvalues of problem (17) is investigated, for the selected truncation orders, N=20, 40, 60, and 80, and the 
coefficients given as in Figs. 2.a,b and 3.a,b, respectively for G=0.2 and 0.8. The fully converged first ten eigenvalues 
are shown for the four truncation orders, while the last column stands for the exact solution of the constant properties 
case taking the average values (k0=0.5, w0=0.5), which corresponds to letting G=0 (μi=iπ). One may see that the case 
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G=0.2 (Table 3.a) presents a faster convergence behavior, with five significant digits fully converged at N=80, and four 
digits even at much lower orders (N=40). The case G=0.8 (Table 3.b) requires N=80 for convergence to three or four 
digits Also, the case G=0.2 in much closer to the average coefficients case than the case of larger amplitudes (G=0.8). 
 

Table 3.a – Influence of the coefficients expansion order on the eigenvalues convergence for random properties 
case, with G=0.2 and M=130. 

Order i N=20 N=40 N=60 N=80 Average 
Coefficients  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

3.16449 
6.28282 
9.35681 
12.6530 
15.7713 
19.0701 
22.2023 
24.9620 
28.0636 
31.4196 

3.15729 
6.26935 
9.33976 
12.6170 
15.7373 
19.0190 
22.1164 
24.8902 
27.9403 
31.0352 

3.15689 
6.26850 
9.33878 
12.6161 
15.7349 
19.0164 
22.1171 
24.8873 
27.9376 
31.0298 

3.15686 
6.26838 
9.33878 
12.6160 
15.7347 
19.0160 
22.1168 
24.8868 
27.9368 
31.0296 

3.14159 
6.28319 
9.42478 
12.5664 
15.7080 
18.8496 
21.9911 
25.1327 
28.2743 
31.4159 

 
Table 3.b – Influence of the coefficients expansion order on the eigenvalues convergence for random properties 

case, with G=0.8 and M=130. 
Order i N=20 N=40 N=60 N=80 Average 

Coefficients  
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

3.06151 
5.62010 
8.55875 
12.1256 
15.1172 
19.0776 
22.8903 
24.0256 
27.4253 
31.2083 

2.99641 
5.67426 
8.50327 
11.6373 
14.8270 
18.4934 
21.7319 
23.9314 
26.3126 
28.4118 

2.98972 
5.65784 
8.50833 
11.6541 
14.6997 
18.3607 
21.7461 
23.9213 
26.2995 
28.4003 

2.98923 
5.65421 
8.51195 
11.6590 
14.6918 
18.3456 
21.7476 
23.8994 
26.2807 
28.4079 

3.14159 
6.28319 
9.42478 
12.5664 
15.7080 
18.8496 
21.9911 
25.1327 
28.2743 
31.4159 

 
Finally, we examine the behavior of the temperature distribution within the medium, as a function of the gain 

G for the values G=0, 0.2, 0.5, 0.8 and 1, which governs the amplitude of the coefficients variations, but maintaining the 
same random numbers at each x for the different gains. Figures 4.a,b illustrate the temperature profile behavior at two 
different dimensionless times, respectively, for t=0.05 and 0.1. The base case G=0 provides the result for the constant 
properties situation, when the properties local variations are ignored and substituted by an effective average value. As 
we can see, the differences between the variable and constant coefficients cases are more significant for increasing G 
and time value, and closer to the boundary x=1 for this particular application. A reasonable reproduction of the actual 
heterogeneous problem solution when employing effective values, is achieved only for the moderate case of G=0.2. 
 

  
Figure 4.a– Temperature distribution for the random 
properties example at t=0.05, with G=0, 0.2, 0.5, 0.8 

and 1,  and truncation orders M=130 and N=80. 

Figure 4.b–Temperature distribution for the random 
properties example at t=0.1, with G=0, 0.2, 0.5, 0.8  
and 1,  and truncation orders M=130 and N=80. 
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