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Resumo. Electroosmotic flow in microchannels has revealed of great applications in many areas, such as biomedicine,
pharmacy, environmental monitoring and defense, among others. Drug devilery systems and the analysis and
sequencing of DNA/RNA are some examples of these applications. Aiming a better understanding of this process and
also providing data to an experiment that is being constructed at the Laboratory of Transmission and Technology of
Heat (LTTC - COPPE/UFRJ), this work presents a study about the electroosmotic flow and the transient forced
convection in a parallel plate microchannel, with 10 pum between the plates The Generalized Integral Transform
Technique (GITT), with partial transforms, is used to solve the convection problem. The eigenvalue problem that
comes from the application of the GITT in the convection problem is also solved by GITT. Using the fact that this kind
of problem has small transients, the pseudo—transient formulation of the method is also studied.
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1. INTRODUCTION

Electroosmotic flow in microchannels has been used with great results in many areas, such as biomedicine,
pharmacy, environmental monitoring and defense, among others. Drug delivery, DNA analysis and sequencing and
chips with sensors to detect chemical and biological agents are some usual applications of this technology. In all these
examples, the reliability and adequacy of all components are essencial for the whole project success and for the correct
operation of the entire system. In particular, microvalves and micropumps with moving parts are difficult to project and
manufacture, susceptible to mechanical failures and defects on manufacturing, and don’t allow the precise control
required by the majority of applications. In this context, electroosmotic flow appears as an excellent alternative,
allowing pump and flow control without moving parts, through manipulation of electrical fields. Furthermore, the plug-
flow profile, typical of electroosmotic flow, allows fluid transportation without dispersion problems that would be
present in a pressure driven flow.

Aiming a theoretical study of this matter, this work presents an analysis of forced convection in a parallel plate
microchannel, with purely electroosmotic flow. It has two major goals. The first one is to perform a physical analysis of
the problem, providing information and reference data for a lab experiment that is being constructed at LTTC. The
second one is to exploit the partial transform in pseudo-transient formulation of the Generalized Integral Transform
Technique (GITT), trying to find a new methodology to reach the steady state result in a more efficient way,
considering that there is no interest in the transient result in the analysis that is being performed.

2. PROBLEM FORMULATION

Electroosmosis is a process in which an ionized liquid moves in relation to an electrically charged stationary surface,
when subjected to an electric field externally applied. Most solid surfaces will acquire a relative electric charge when in
contact with an aqueous electrolytic solution, which in turn influences the charge distribution in the solution. If the
surface acquires negative charges, as shown in Fig. 1a, ions of opposite charge are attracted towards the surface and
ions of the same charge are repelled from the surface (Maynes and Webb, 2004), keeping the bulk of the liquid, far
away from the wall, electrically neutral. The ions of opposite charge cluster immediatelly near the wall, forming the
Stern layer, a layer of typical thickness of one ionic diameter. The ions within the Stern layer are attracted to the wall
with very strong electroostatic forces; hence, they are immobilized near the charged surface. Immediatelly after the
Stern layer there forms the diffuse layer, where the ion density variation obeys the Boltzmann distribution, and goes
from its maximum value near the wall to a zero charge in the fluid core (Karniadakis et al., 2005).

Hence, Stern and diffuse layers form the electric double layer (EDL), characterized by Debye length, A, which is
the wall-normal distance over which the net charge has decreased from the charge magnitude near the wall surface to
about 37% of the surface charge, as shown in Fig. 1b (Maynes and Webb, 2004).
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Figure 1. Schematic illustration of the electroosmotic flow. (a) the EDL; (b) Debye length; (c) fluid flow.

The electroosmotic flow occurs when an electric field is applied parallel to the surface, in the presence of a
stabilized EDL. In Figure 1c it can be seen that, in the presence of an externally applied electric field, positive ions will
be attracted by the cathode and repelled by the anode, causing the movement of the whole fluid in the direction of the
electric field, as a consequence of the presence of viscous forces (Tabeling, 2005).

In this work we consider a rectangular microchannel with 10 um x 200 ym x 2 cm (heigth x width x length), with
one surface made of glass and the other made of silicon, that has been made on the Laboratorie de Microfluidique,
MEMS et Nanostructures — MMN, ESPCI, by professor Patrick Tabeling. As the width is 20 times greater than the
height, it will be modeled as a parallel plate microchannel (Fig. 2).
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Figure 2. Schematic illustration of the microchannel
2.1. Electroosmotic flow

The following assumptions are considered for the hydrodynamics: a) Newtonian fluid, with constant physical
properties; b) incompressible, laminar and fully developed flow; c) steady state regime; d) purely electroosmotic flow
(which means that there is no pressure gradient); e) electric field externally applied on the fluid, in the x direction.

With this assumptions, mass conservation equation resumes to u = u(y). After some manipulations, the Navier-
Stokes equations take the following dimensionless form, considering boundary condition of no-slip on both surfaces,
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withG=¢e,k,Tg, /[Lzquu, , where E; is the dimensionless electric field externally applied, i(y) is the

dimensionless electrical potential, & the dielectric constant of the medium, g, the permittivity of vacuum, k, the
Boltzmann constant, 7' is the absolute temperature, {;, a reference zeta potential, L the length of the microchannel, z the
ion charge, ¢ the elemental charge, x the fluid viscosity and u,, a reference velocity.

The dimensionless electric potential is obtained by a combination of Poisson and Boltzmann distribution equations
(Yang et al., 2001), and is given by
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where Z = kd = d/A is a parameter that relates the length of the channel and the EDL length, 4, that is computed as the
inverse of the Debye-Hiickel parameter, written as K= 2ny zzqz/ge()ka , where n, is bulk concentration of ions, and ¢,

and ¢, are dimensionless zeta potentials (the zeta potential is the value of the EDL field at the top of Stern layer).
Both systems (Egs. (1) and (2)) are easily solved by integrating and substituting boundary conditions, obtaining
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2.2. Forced convection

To analyze the thermal problem, we consider that the microchannel is subjected to uniform and constant flux in the
silicon surface, and to natural convection with ambient air in the glass surface. The additional following assumptions
are considered: a) transient condition; b) axial diffusion; c) all heat that achieves the silicon surface is transfered to the

fluid; d) thermal resistance of glass surface. For this problem, energy conservation equation can be written, in the
dimensionless form, as
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where the additional following parameters are considered
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In Egs. (8) and (9), T, is the temperature of ambient air, AT the maximum difference temperature in the microchannel,
¢, the heat flux at the silicon surface, & the thermal conductivity of the fluid, 4. an effective heat transfer coefficient,
that considers the thermal resistance of the glass surface, k, the thermal conductivity of glass, /4., the convection heat
transfer coefficient and esp, the thickness of the glass surface.

To analyze the results, we define a mean temperature and the Nusselt numbers for both surfaces,
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3. SOLUTION OF ENERGY EQUATION

The Generalized Integral Transform Technique (GITT) is used to solve Eq. (7). The first step in the application of this
method is to define an auxiliary eigenvalue problem. For this problem, we define an auxiliary problem that includes the
velocity profile (Mikhailov and Cotta, 2005),
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that is solved by GITT itself (Mikhailov and Cotta, 1994, Oliva Soares et al., 2005). So, we define an auxiliary problem
for Eq. (12),
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and the following inverse-transform pair,
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where §~2m (x) is a normalized eigenfunction, §~2m (x)= Q”;/(f) and N, = f;: [Qm (x)]2 dx is the norm of the

m

eingenfunctions. The solution for Eq. (13) is given by Ozisik (1993) as
Q,,(Y)=cos(v,Y) (15)

where v, are the positive roots of sin(;,)-(Bi/v;,)cos(v;,) = 0.

With this, it’s possible to obtain the eigenvectors T ,m= 1,2,...,S8,. and to reconstruct /;(x) using Eq. (14a),

im >
considering S terms in the sum, large enough to obtain the desirable number of significant digits in the result. Now, it’s
possible to define an inverse-transform pair to the dimensionless temperature,
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The norm, in this case, is given by N, = [U (Y ) [Fl. (Y )]2 dY . To apply the integral transform, we operate on Eq. (7) with
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These coupled system of partial differential equations is solved by the numerical Method of Lines, implemented in
routine NDSolve, in Mathematica software, truncating the infinite sum in a number S of terms, sufficient to ensure

convergence with the desired number of significant digits. Once the potentials (gi) are numerically computed, this

routine gives the solution as interpolating functions, that allows the direct application of the inverse formula (Eq. (16a))
to obtain the dimensionless temperature field.

4. RESULTS AND DISCUSS

To generate all the results presented here, we consider a diluted electrolytic solution of KCI in water (¢ = 80, u =
0,9X10'3kg/ms, p =998 kg/m3 , kr=0,6W/mK, o = 1,44x10'm?%s, z = 1), with molar concentration of 10*M. Using these
data, and considering u,, = 2mm/s (Karniadakis et al., 2005), it is possible to estimate Pe = 0,139 (Peclet) and Re =
0,022 (Reynolds). With this Peclet number, we cannot let axial diffusion out of the modeling. To the molar
concentration mentioned above, the zeta potential is equal to -100mV at the silicon surface (Mala et al., 1997) and equal
to -59mV at the glass surface (Erickson et al, 2000). Using this data, at ambient temperature (7 = 298K), Debye-Hiickel
parameter is x = 3,25625x10°m™; consequently, the length of the EDL is A = 307,1nm and Z = 32,562. To generate the
results showed here, we consider Z = 25, that is still a typical electroosmotic flow. We apply electric fields of 1V/mm.

To simulate forced convection, we consider heat flux of 1000W/m’ at silicon surface. A maximum difference
temperature of 80°C is used, to avoid fluid evaporation inside the microchannel. A convection heat transfer coefficient
of 25 W/m’K is considered, corresponding to natural convection with air at ambient temperature. The thermal
conductivity of the glass is 0,8W/mK, and using all these values it is possible to compute an effective heat transfer
coefficient (4,z.) of 24,62 W/m’K and Bi = 0,00041.

4.1. Validation

It is expected a parabolic velocity profile for Z = 0,5, because it represents a situation where the EDL length is
greater than the channel diameter, simulating a constant pressure gradient across channel section. The value of Z =50
represents a typical electroosmotic flow, and then a plug profile is expected when zeta potentials of the surfaces are the
same. It was used to validate the results obtained with Eq. (4), and the expected profile has been obtained (Oliva Soares,
2007).

The eigenvalue problem solved by GITT was compared with an analytical result, obtained by Castelldes and Cotta
(2005), Mikhailov and Ozisik (1984) and Mikhailov and Cotta (1997), in terms of confluent hypergeometric functions,
for a parabolic velocity profile. The numerical results showed convergence to the analytical value with S, = 30 in the
sum, with 6 significant digits. Table 1 presents this result; S is the number of terms in the main sum (for the
computation of the dimensionless temperature), and S,,. is used to assure converge, S, =S + Sexc-

The transient energy problem was compared with a simpler version, in steady state regime and without axial
conduction, using the same solution methodology. To make the comparison, we considered Pe = 1000 in the complete
solution, to simulate a situation without axial conduction. We observed that for z = 12000 (¢ ~ 8s) the transient solution
reaches the steady-state solution (Oliva Soares, 2007).



Table 1 — Comparing the solution obtained with GITT applied to the eigenvalue problem with the analytical result,
for a parabolic velocity profile (S = 10), for some eigenvalues

Sp= 10 S =20 S, =30 S =40 S =50 Analytical
0 4,62942 4,62942 4,62942 4,62942 4,62942 4,62942
s 11,15961 11,1596 11,1596 11,1596 11,1596 11,1596
e 17,69126 17,6912 17,6912 17,6912 17,6912 17,6912
e 2431113 2422302 2422302 2422302 2422302 24,22302
Lho 43,50276 30,75492 30,75492 30,75492 30,75492 30,75492

4.2. Convergence

Our validation has shown that GITT can be used to solve eigenvalue problem, with good results, when it is not
possible to obtain the analytical solution. We have verified how many terms are necessary in the sum to reach
convergence when an electroosmotic velocity profile is used (Z = 25), finding out that S,,, = 40 terms are enough to
assure convergence with 5 significant digits, as seen in Tab. 2.

Table 2 — Convergence of the first 10 eigenvalues for a typical electroosmotic flow

Sexe =0 Sexe = 10 Sexe = 20 Sexe = 30 Sexe = 40 Sexe = 50
> 19,42276 19,42214 19,42211 19,42211 19,42210 19,42210
LUy 57,65417 57,63324 57,63238 57,63228 57,63225 57,63224
Uy 95,62972 95,47825 95,47373 95,47318 95,47306 95,47303
Lg 134,07163 133,15624 133,14161 133,13997 133,13962 133,13952
Lo 183,12336 170,77145 170,73302 170,72925 170,72847 170,72824

It is also necessary to analyze convergence of the method (GITT) applied to advective-diffusive problem. To do this,
some truncation orders are considered, and the one who gives good results with a reasonable computational cost is
chosen (time between parenthesis in the first line of Tabs. 3 and 4 is computational time, in a Pentium D, 2,80 GHz and
1 Gb RAM). To give an example, Tab. 3 shows the results for mean temperature, and Tab. 4 shows it for the Nusselt
number on silicon surface. A simple filter has been used to verify the possibility of accelerate the convergence. We
could observe that, for a fixed number of terms in the sum, it is possible to obtain one or two more significant digits
using this technique, mainly for Nusselt numbers (Oliva Soares, 2007).

Table 3 — Dimensionless mean temperature convergence

0% S=35 S=10 S=15 S=20 §=25

(0,2969 s) (2,4689 s) (16,3439 s) (435,625 s) (17757,0779 s)
7=2000 500 0,29471 0,29466 0,29465 0,29464 0,29463
(t=139s) 2000 0,42815 0,42811 0,42811 0,42810 0,42810
7= 6000 500 0,44623 0,44619 0,44618 0,44617 0,44617
(t=4,17s) 2000 0,69696 0,69692 0,69691 0,69691 0,69691
7=12000 500 0,46976 0,46975 0,46974 0,46974 0,46975
(t=834s) 2000 0,75286 0,75284 0,75284 0,75283 0,75285

Table 4 — Dimensionless Nusselt convergence on silicon surface

Y S=35 S=10 S=15 S=20 §=25

(0,2969 s) (2,4689 s) (16,3439 s) (435,625 s) (17757,0779 s)
7=2000 500 8,12735 7,53738 7,34218 7,24004 7,18259
(t=139s) 2000 591131 5,48878 5,34873 5,27543 523417
7= 6000 500 7,29467 6,81334 6,65217 6,56789 6,52032
(t=4,17s) 2000 5,14985 4,82409 4,71450 4,65719 4,62480
7=12000 500 7,18066 6,71327 6,55654 6,47459 6,42827
(t=834s) 2000 5,01558 4,70560 4,60105 4,54639 4,51545

4.3. Physical results

We briefly present some physical results for the EDL field, velocity profile, mean temperature and Nusselt numbers.




Figure 5 shows variation of EDL with Z parameter, for a 10™*M solution, and Fig. 6 shows the same kind of result
for the velocity profile. Figure 7 and Fig. 8 presents the dimensionless mean temperature varying with heat flux and
electric field. This information is used to see which values can be used in the laboratory in order to no have vaporization
of the fluid inside the channel.
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Nusselt number is a measure of the relationship between convection and conduction in the fluid. Figures 9 and 10
shows Nusselt numbers on both surfaces (silicon and glass), varying with the velocity profile, represented by a variation
in electric field (a greater electric field represents a greater velocity).

4.4, Pseudo-transient formulation

In a practical situation in microscale, our interest is on steady-state solutions (for the case considered at this work, a
physical time of about 7,6s is enough to reach steady-state regime). So one could ask why we considered transient
regime in energy equations. The transient term is included here to make it possible to obtain the steady-state solution
without computational problems. When it is used, the integral transform of energy equation results in an initial value
problem, solved directly by NDSolve routine. If it is not used, the result of integral transformation of energy equation is
a boundary value problem, non-treatable by NDSolve, until version 5.2 of Mathematica. Routine DBVPFD, of IMSL,
could be used in this situation, but it’s not trivial, and it wasn’t our intention to use another programming language.

Considering this, we thought about working with a pseudo-transient problem to reach the steady-state result in a
more efficient way, saving computational time. So, have we considered a lowest-order solution (Cotta, 1993), rewriting
Eq. (17) substituting 4;; in the first sum by 4;;. Doing it, we have considered only the diagonal of the matrix, leaving
this term with less precision. We have obtained a significant less computational time. NDSolve took 5 times less to be



executed, comparing with the case when 4;; is considered in the sum, without lost of precision (a difference in the final
result has been observed only for initial times, in the 6 significant digit).
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