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Abstract. Due to the relevant applications in the food industries, there is a growing demand for the formulation and 

solution of inverse mass transfer problems. In this work an inverse mass diffusion problem is solved using two 

optimization methods, Differential Evolution and Levenberg-Marquardt, to estimate effective diffusivity of mass of 

mushroom of the species Agaricus blazei at different drying temperatures. The solution of the mass diffusional 

equation is made with a separation of variables method to obtain the desired solution for the moisture content 

distribution. Before the solution of the inverse problem of parameters estimation was made a sensitivity analysis to the 

parameters of the model, where three case studies are investigated, changing two operating conditions: temperature 

and speed of air drying. The analysis shows no significant differences between reported and estimated effective 

diffusivity of mass, by Differential Evolution and Levenberg-Marquardt methods. 
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1. INTRODUCTION  

 

Simulation models of the drying processes are used for designing new or improving existing drying systems or even 

for the control of the drying process. All parameters (transfer coefficients, effective moisture diffusivity, etc) used by 

simulation models are directly related to the drying conditions, i.e. temperature and velocity of the drying medium 

inside the mechanical dryer. Several researches have investigated the drying kinetics of different agricultural products 

in order to determine the effective diffusivity of mass, namely El-Aouar et al. (2003), Azzous et al. (2002), Martins et 

al. (2004). The parameter estimation can be made through the Direct Methods or Inverse Methods. 
The use of inverse analysis techniques represents a new research paradigm. The results obtained from numerical 

simulations and from experiments are not simply compared a posteriori, but a close synergism exists between 

experimental and theoretical researches during the course of study, in order to obtain the maximum information 

regarding the physical problem under consideration (Beck, 1999). Inverse approach to parameter estimation in the last 

few decades has become widely in various scientific disciplines, Simpson e Cortés (2004), Mendonça et al. (2005), 

Vasconcellos et al. (2002), Zueco et al., (2003), Anderson et al., (2006) e Mariani et al. (2007) using the inverse method 

to estimate the thermophysical properties of foods, and Colaço et al. (2004) e Huang et al. (2008). Many methods have 

been proposed to solve inverse problems, including the deterministic and stochastic methods. 

Some deterministic methods are: Conjugate Gradient Method, the Newton Method, Steepest Descent Method, 

Gauss Method and Levenberg-Marquardt Method that are based on gradient information, to minimize the objective 

function. The Levenberg-Marquardt Method has been successfully implemented in several areas (Santos et al., 2002; 

Yang e Gao, 2007; Kanevce et al., 2005; Mendonça et al., 2005; Silva et al., 2006). 

Among the stochastic methods are Simulated Annealing Method, Differential Evolution and the Particle Swarm 

Method (Colaço et al., 2004). The Differential Evolution algorithm was first introduced by Storn and Price (1995), and 

was successfully applied in the optimization of some well-known non-linear, non-differentiable and non-convex 

functions by Storn (1997). This method has been applied successfully in various fields of science and may be cited the 

work of Kanevce et al. (2003), Arantes et al. (2006), Purcina e Saramago (2007) e Mariani et al. (2007). 

Deterministic methods are in general computationally faster than stochastic methods, although they can converge to 

a local minima or maxima, instead of the global one. On the other hand, stochastic algorithms they are ideally converge 

to a global maxima or minima, although they are computationally slower than the deterministic ones (Colaço et al., 

2004). This paper presents a procedure to estimate effective diffusivity of mass of mushrooms in drying process, using 

Differential Evolution and Levenberg-Marquardt Methods as technique for obtain parameters of piecewise function 

through of inverse method. 

 

2. DIRECT PROBLEM 
 
In the direct problem of mass transfer, the application of Fick’s second law allows the development of a 

mathematical model that reproduces the behavior assumed by some products when submitted to air drying process. In 

order to model the mass transfer, the following assumptions were made: 



 

• The process occurs in transient regime and there is not mass generation inside the product; 

• The resistance to moisture flow is uniformly distributed throughout the interior of the material during the 

process; and the volume shrinkage is negligible; 

• The mass transfer is predominantly one dimensional; 

• The effective diffusivity of mass is constant. 

 

The general form, in rectangular coordinates, of the mass diffusional equation, is: 
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where  X: moisture content (g H2O/g dry matter) 

             Deff: effective diffusivity of mass (m²/s) 

             z: space variable (m) 

             t: time (s) 

 

Using the following initial and boundary conditions: 
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In this work, the method of separation of variables was utilized to obtain the desired solution for the moisture 

content distribution. Therefore, the solution is written in the following way: 
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where: X: moisture content at instant t (g H2O/g dry matter)  

X0: initial moisture content (g H2O /g dry matter) 

Xeq: equilibrium moisture content (g H2O/g dry matter) 

Deff: effective diffusivity of mass (m²/s) 
   t: time (s) 

L: characteristic length, sample half- thickness (m) 

 

The Tab 1 shows the operational conditions used in the experiments conducted by Kurozawa (2005), and used in 

this article. 

 

Table 1: Conditions and parameters used in experimental tests of dry mushrooms with a half-thickness L= 2.5 ×10
-3

 

m (Kurozawa, 2005) 

 

Test Operating Conditions 

 

X0  

(g H2O/g dry matter) 

Xeq  

(g H2O/g dry matter) 

Time  

(h) 

Deff  

(m²/s) 

1 45°C e 1.20 m/s 9.8093 0.0317 8 3.88×10
-10

 

2 75°C e 1.20 m/s 9.9688 0.0048 2.5 12.79×10
-10

 

3 45°C e 2.30 m/s 8.4584 0.0265 5 6.91×10
-10

 

4 75°C e 2,30 m/s 9.2295 0.0045 2.5 17.5×10
-10

 

5 40°C e 1.75 m/s 9.7160 0.0544 10 4.14×10
-10

 

6 80°C e 1,75 m/s 7.5560 0.0051 5 14.29×10
-10

 

7 60°C e 1.00 m/s 7.3002 0.0086 7 5.56×10
-10

 

8 60°C e 2.50 m/s 7.1137 0.0103 4 9.49×10
-10

 

 

The curves presented in Fig. 1, for all the considered tests, show that the moisture content existent at the beginning 

of the drying process is exponentially reduced until reaching the equilibrium moisture content. Such behavior 

demonstrates the inexistence of the period of constant drying, thus, the process of drying of the product just happened in 
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the decreasing period of drying, being controlled for the internal diffusion of the liquid until the surface where the 

evaporation happens. 

 

 

Figure 1: Modelling of drying curves using the diffusional model for fresh mushroom. 

 

A comparative analysis of the curves presented in Fig. 1 it shows that the proposed model presents good agreement 

with the experimental data and generated ones for it, indicating the possibility of success in the application of the 

inverse analysis. Several authors (El-Aouar, 2003; Brod, 2003; Park, 2004; Lescano, 2004) had found excellent 

adjustment of the experimental data of drying to the diffusional model, based on the law of Fick. 

 

3. SENSITIVITY ANALYSIS 

 

The moisture content distribution depends on z, t and also on a number physical parameters. In particular: 

 

( )effeq DXXtzFX ,,,, 0=           (6) 

 

A sensitivity coefficient is the first derivative of the measured variable in relation to the unknown parameter. Let 

( ), , ,z tη µ β  be the state variable, ( )1 2, ,...,i nz z z z= represents the spatial variables, t the time, ( )
qµµµµ ,..., 21=  the 

known parameters and ( )pββββ ,...,, 21=  the unknown parameters. The sensitivity coefficient at point iz , time tn for the 

parameter βj is: 
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The sensitivity coefficients represent the variation in the state variable due to a change in the value of an unknown 

parameter. In other words, they verify the influence of the parameter on the moisture content distribution. Therefore, 

sensitivity coefficients are, in a certain way, “the key of success” to an estimation procedure of the parameter (Beck & 

Arnold, 1977). Stela et al. (2005) analyzed the calculation and the use of sensitivity coefficients in problems of heat 

conduction, demonstrating as these supplies fundamental information on the effects of these parameters in the answers 

of the models. 

For the comparison of the sensitivity coefficients which do not have the same units, we use Reduced Sensitivity 

Coefficients obtained by multiplying the original coefficients by the parameters that they are referrend. In this article 

the sensitivity coefficients are evaluated to equilibrium moisture content Xeq and effective diffusivity of mass Deff. 
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3.1. Sensitivity to the Equilibrium Moisture Content 

 

The Fig. 2 contains a graph where finds the temporary evolution of the reduced sensitivity coefficients to the 

equilibrium moisture content (Xeq) for the tests 1, 2 and 3. It is observed that the sensitivity coefficients develop in 

increasing way with the time until reaching the stability. The curves indicate that the variation of the sensitivity 

coefficients are more significant when the process is accomplished with smaller temperature values. Analyzing visually 

the evolution of the coefficients is verified that the processes accomplished with low values of drying temperature 

supply equilibrium moisture content larger, and the equilibrium condition is reached in bigger interval of time. 

 

Figure 2: Sensitivity coefficient for Xeq, in agreement with each analyzed test. 

 

3.2. Sensitivity to Effective Diffusivity of Mass  

 
The temporary evolution of the sensitivity coefficients to the effective diffusivity of mass, Deff, with the time can be 

verified in Fig. 3. It is observed that initially the coefficients have a decreasing and negative evolution. Considering the 

values in absolute terms, the behavior of the curves indicates that the sensitivity coefficient to the effective diffusivity of 

mass, Deff, reaches its maximum value when the experience is accomplished for larger temperatures of the drying air. 

This indicates that exists a tendency that the estimate of Deff is better determined if the process to occur in higher 

temperatures. 

 

Figure 3: Sensitivity coefficient for Deff, in agreement with each analyzed test. 

 

3.3. Susceptibility of the Model Parameters to the Identification 

 

The Fig. 4 is relative to the tests 2 and present a comparison accomplished among the reduced sensitivity 

coefficients of the equilibrium moisture content to the parameters equilibrium moisture content, Xeq, and effective 

diffusivity of mass, Deff, with the objective of study the linear dependence between them. 
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Figure 4: Sensitivity coefficients for Xeq and Deff, for second test 

 

It can be verified through a visual analysis of the evolution of those sensitivity coefficients that: 

 

� The parameters are linearly independent; in other words, the sensitivity coefficients vary in a different manner. 

� The sensitivity to the equilibrium moisture content, Xeq, is practically null, during the whole period of the drying. 

Therefore, it is impossible to estimate this parameter, once the same possesses small sensitivity and variations in 

this parameter will imply undistinguishable changes to the theoretical model. 

� For effective diffusivity of mass, Deff, considering the values in absolute terms, is observed that the coefficient 

reaches a maximum value and that value is reduced when the end of the drying is approaching. The sensitivity of 

this model is high sufficiently, showing that the same have great influence in the profile of the moisture content. In 

term, of parameter estimation, it indicates that to small changes in the value of this parameter it will affect the 

model, or in other words, the information in it contained are important. 

� The curves of the reduced sensitivity coefficients still show which the best interval of time to accomplish the 

estimate of the effective diffusivity of mass, Deff. It is verified that the biggest value in absolute terms is reached 

with approximately 0.5 h of drying.  

 

Finally, the done observations show that is not possible to estimation the two parameters simultaneously from an 

only experience. 

 

4. Inverse Problem 

 

For the inverse problem of interest here, the effective moisture diffusivity is regarded as unknown parameter. The 

choice for this parameter is associated to the analysis of accomplished sensitivity. 

The estimation methodology used is based on the minimization of the ordinary least square norm, written as: 
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where Y is the vector of measured moisture and X(β) is the vector of calculated moisture obtained from the solution of 

the direct problem , β = β1, β2,..., βp is the vector of unknown parameters p. Therefore: 
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The Differential Evolution and Levenberg-Marquardt methods were considered for the minimization of the 

ordinary least square norm, given by Eq. (10). 

 

4.1. Differential Evolution 

 
Differential Evolution (DE) is a population-based stochastic function minimizer (or maximizer) relating to 

evolutionary computation, whose simple yet powerful and straightforward features make it very attractive for numerical 

optimization. DE combines simple arithmetical operators with the classical operators of recombination, mutation and 

selection to evolve from a randomly generated starting population to a final solution. 



The different variants of DE are classified using the following notation: DE/ α/ β/ δ, where α indicates the method 

for selecting the parent chromosome that will form the base of the mutated vector, β indicates the number of difference 

vectors used to perturb the base chromosome, and δ indicates the recombination mechanism used to create the offspring 

population. The bin acronym indicates that the recombination is controlled by a series of independent binomial 

experiments. 

The variant implemented in this article was the DE/rand/1/bin, which involved the following steps and procedures: 

 

Step 1: Parameter setup 

The user chooses the parameters of population size, the boundary constraints of optimization variables, the mutation 

factor (fm), the crossover rate (CR), and the stopping criterion of maximum number of iterations (generations), Kmax. 

Step 2: Initialization of an individual population 

Set generation k = 0. Initialize a population of i = 1, .., N individuals (real-valued n-dimensional solution vectors) with 

random values generated according to a uniform probability distribution in the n dimensional problem space. These 

initial individual values are chosen at random from within user-defined bounds (boundary constraints). 

Step 3: Evaluation of the individual population 

Evaluate the fitness value of each individual. 

Step 4: Mutation operation (or differential operation) 

Mutation is an operation that adds a vector differential to a population vector of individuals according to the following 

equation: 
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where i =1, 2,...,N is the individual’s index of population; k is the generation; [ ]T
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for the position of the i-th individual of population of N real-valued n-dimensional vectors; 

[ ]T

iniii kzkzkzkz )(,),(),()( 21 K= stands for the position of the i-th individual of a mutant vector; r1, r2 and r3 are 

mutually different integers and also different from the running index, i, randomly selected with uniform distribution 

from the set { }Nii KK ,1,1,2,1 +−  ; fm > 0 is a real parameter called mutation factor, which controls the amplification 

of the difference between two individuals so as to avoid search stagnation and is usually taken from the range [0.1, 1]. 

Step 5: Recombination operation 

Following the mutation operation, recombination is applied to the population. Recombination is employed to generate a 

trial vector by replacing certain parameters of the target vector with the corresponding parameters of a randomly 

generated donor vector. 

For each vector, zi(k+1), an index rnbr( ) ∈ {1,2,...n} is randomly chosen using uniform distribution, and a trial vector, 
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In the above equations, randb(j) is the j-th evaluation of a uniform random number generation with [0, 1] and CR is a 

crossover or recombination rate in the range [0, 1]. The performance of a DE algorithm usually depends on three 

variables: the population size N, the mutation factor fm, and the recombination rate CR. 

Step 6: Selection operation 

Selection is the procedure of producing better offspring. To decide whether or not the vector ui(k+1) should be a 

member of the population comprising the next generation, it is compared with the corresponding vector xi(k). Thus, if f 

denotes the objective function under minimization, then 
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In this case, the cost of each trial vector ui(k+1) is compared with that of its parent target vector xi(k). If the cost, f, of 

the target vector xi(k) is lower than that of the trial vector, the target is allowed to advance to the next generation. 

Otherwise, the target vector is replaced by trial vector in the next generation. 

Step 7: Verification of stop criterion 

Set the generation number for k = k + 1. Proceed to Step 3 until a stopping criterion is met, usually Kmax. The stopping 

criterion depends on the type of problem. 
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4.2. LevenbergMarquardt 

 

The Method of Levenberg-Marquardt (LM) (Press et al., 1990) inserts a restriction to the minimization criterion, 

to get over the instability of the Gauss Method. Based in the criterion of the ordinary least squares, the iterative formula 

has the following expression: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )βλββ
k

XY
kT

J
k

m
kk

J
kT

J
kk

−

−

Ω++=
+







1
1        (15) 

 

where 
( )kλ  is a positive scalar named damping parameter, 

( )k

mΩ  is a diagonal matrix and 
( )k

J  is the sensitivity 

coefficients matrix. 

The purpose oh the matrix term 
( )kk

mλ Ω  at Eq.(15) is to damp oscillations and instabilities due to the ill-

conditioned character of the problem. With such an approach, the matrix 
TJ J  is not required to be non-singular in the 

beginning of iterations and the Levenberg-Marquardt Method tends to the Steepest Descent Method. The parameter 
( )kλ  is then gradually reduced as the iteration procedure advances to the solution of the parameter estimation problem, 

and then the Levenberg-Marquardt Method tends to the Gauss Method (Meijas et al, 1999). 

The iterative procedure starts with an initial guess, 
( )0β , and at each step the vector β  is modified until: 
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where is δ  a small number that must be chosen by the investigator (typically 10
-3

) and ξ  (<10
-10

) prevents overflow if 
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Step 1: solve the direct moisture content transfer problem give by Eq.(5) with the available estimate 
( )kβ . 

Step 2: compute ( )kS β  from Eq. (10). 

Step 3: compute the sensitivity matrix 
( )k

J  and then the matrix 
( )k

mΩ . 

Step 4: compute the increments for the unknown parameters by using Eq.(16). 

Step 5: compute the new estimate 1+kβ  as kkk βββ ∆+=+1 . 

Step 6: solve now the direct problem Eq. (5) with the new estimate 1+kβ  in order to find ( )1+kX β . Then compute 

( )1+kS β , as defined by Eq. ( 10). 

Step 7: if ( )1+kS β ≥ ( )kS β , replace 
( )kλ  by 10

( )kλ  and return to step 4. 

Step 8:if ( )1+kS β < ( )kS β , accept the new estimate 1+kβ  and replace 
( )kλ  by 0,1

( )kλ . 

Step 9: check the stopping criteria by Eq. (16). 

 

5. NUMERICAL SIMULATION 
 

The numerical example proposed in this section illustrates the parametric sensitivity analysis as presented in Niliot 

and Lefèvre (2004).In order to compare the parameter estimation approach results to the experimental results given by 

Kurozawa (2005), we propose some numerical experiments in the same conditions.  

Measurements contained in vector Y are generally not exact. The measurement errors produce on the estimated 

vector β , amplified by the ill-posed character of the inverse problem. In order to simulate measurements errors (εi), an 

additional Gaussian error of zero mean value and standard deviation σ = 0.05 is added to the moisture content field 

obtained from direct calculation. Then: 

 

iiY εβη += )(
~

 

 

An example without errors, of the numerical and experimental moisture content field is presented in Fig. 5 versus 

time, for second test. For these results, the maximum values of the residuals were found with the same period of drying 



for the two methods, being of 0.6947 and 0.7560 gH2O/g dry matter through Levenberg-Marquardt and Differential 

Evolution, respectively. The minimum values occurred at different intervals of time, where -0.4382 gH2O/g dry matter 

was reached with 1h by Levenberg-Marquardt method and -0.3812 gH2O/g dry matter happened after 1.5 h of drying 

using the Differential Evolution. 

Figure 5: Moisture content (a) and corresponding residuals (b) without errors, for second test 

 

The numerical and experimental moisture content field, selected randomly of the 30 estimations, with Gaussian 

distribution (with zero mean and standard deviation 0.05) is presented in Fig. 6 versus time, for second test. As it could 

be predicted, the results are much more stable using good quality measurements (Fig. 5a) than with poor quality 

measurements (Fig 6 a, b). 

(c) 

 
Figure 6: Moisture content and corresponding measurement error for one estimation using σ = 0.05, results for second 

test: (a) Differential Evolution, (b) Levenberg-Marquardt and (c) Residuals. 
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Note that the obtained values of the residuals reaches its maxima and minima opposed times, however, it verified 

that low values, centered around the zero and with a relatively random distribution were found. The results show that it 

is possible to estimate the variable Deff using both optimization methods, with a good precision.  

In Tab 2 the mean values and the standard deviation for Deff and objective function are given. These results show 

that the Deff obtained for the second, fourth, sixth and eight tests presents the standard deviation bigger than the other 

tests. This result confirms the sensitivity analysis presented in Fig. 3, where the sensitivity to the effective diffusivity of 

mass increases when the process to occur in higher temperatures. 

 

Table 2: Results for 30 estimation on a virtual experiment obtained with σ = 0.05. 

 

Test Levenberg-Marquardt Differential Evolution 

 f  σf effD  σDeff f  σf effD  σDeff 

1 0.18871 0.01711 3.3272×10
-10

 2.9176×10
-12

 0.04375 0.00848 4.0745×10
-10

 5.1655×10
-12

 

2 0.03176 0.00611 12.325×10
-10

 2.641×10
-11

 0.13687 0.02224 13.012×10
-10

 2.0597×10
-11

 

3 0.16264 0.01363 5.8765×10
-10

 5.4957×10
-12

 0.06184 0.00600 7.1172×10
-10

 1.0177×10
-18

 

4 0.04004 0.03744 16.867×10
-10

 3.6036×10
-11

 0.12079 0.02027 17.517×10
-10

 2.8054×10
-11

 

5 0.37935 0.07715 3.1577×10
-10

 5.026×10
-12

 0.00308 0.00728 4.1592×10
-10

 5.4181×10
-12

 

6 0.07087 0.00590 13.599×10
-10

 3.6613×10
-11

 0.05303 0.00888 14.377×10
-10

 2.3083×10
-11

 

7 0.10547 0.00342 5.1719×10
-10

 2.1441×10
-12

 0.06410 0.00604 5.9666×10
-10

 8.1922×10
-12

 

8 0.09789 0.00399 8.69×10
-10

 4.3999×10
-11

 0.04931 0.01248 9.5536×10
-10

 1.5118×10
-11

 

 

Some results of the Tab 2 are very similar to the experimental results without noise given in Tab 1 showing that 

optimization methods, Differential Evolution and Levenberg-Marquardt, obtain adequately the solution until with noise 

in experimental results. 

 

6. CONCLUSIONS 

 

The inverse problem of the estimation of effective diffusivity of mass has been solved using two methods, 

Differential Evolution and Levenberg-Marquardt. The solution of the direct problem was obtained through the use of 

the method of separation of variables. Sensitivity analysis is a powerful tool for understanding the physical behavior of 

the problem and to determine what parameters can be estimated in a single experiment. The residuals obtained showed 

low values, centered around the zero and with a relatively random distribution. The results shows no significant 

differences between the effective diffusivity of mass found by Differential Evolution and Levenberg-Marquardt 

methods and experimental. The determination of thermophysical properties from an inverse method is an attractive 

technique both from the experimental and methodological point of view, because of its accuracy and short time for 

parameters estimation. 
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