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Abstract. The metal extraction process using polymeric membranes is analyzed by using the Generalized Integral 
Transform Technique (GITT) for the hybrid solution of the related equations of species conservations. The 
mathematical modeling of the physical problem considers the diffusion process through polymeric membranes in order 
to extract metals, such as gold from acid solutions. Therefore, the behavior of the metals concentration profiles to be 
extracted from the feeding phase is discussed in light of the influence of relevant parameters in the extraction process, 
such as, composition and thickness of the membrane, diffusion coefficient and extraction constant. Comparisons with 
previously reported experimental results in the literature for typical situations are also performed. 
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1. INTRODUCTION 
 

Supported liquid membranes (SLM) have demonstrated to be promissory in the separation process of metals from 
aqueous solutions, therefore allowing the separation of metal species using a film of organic solution that is adhered in 
the pores of a polymeric support (Reyes-Aguilera et al., 2008). Currently, liquid membrane separation systems have 
shown to be an alternative extraction technique for metals in dilute solutions due to present advantages over the 
conventional process of solvent extraction, such as the employment of minimum solvent quantity and the low capital 
cost (Wang et al., 2000). 

The computational simulation of mass transfer process in such membranes can be an alternative tool in order to 
determine mass transfer patterns in a reduced time scale, when compared to experimental procedures or as a 
complement task to the experiments by making use of inverse techniques for estimation of parameters of this process. 
In this context, the Generalized Integral Transform Technique (GITT) may employ its hybrid analytical-numerical 
nature to determine concentration profiles in a membrane process. This hybrid technique is derived from the classical 
version (Mikhailov and Özisik, 1984), and was gradually expanded in its applicability and extensively employed in 
heat/mass transfer and fluid flow problems. For instance, a number of contributions have advanced this method towards 
the error controlled solution of internal flow and convective heat transfer problems (Cotta, 1993, 1994 and 1998; Santos 
et al., 2001; Cotta et al., 2005; Cotta and Mikhailov, 2006). 

Therefore, the present work is aimed at developing a computational code capable of simulating the process of metal 
extraction using supported liquid membranes. The GITT approach is then employed to solve the equations of specie 
conservations related to metal extraction, particularly Au (III) from acid solutions. Numerical results are produced for 
the gold concentration distribution to be extracted from the feeding phase, which are discussed in the light of the 
influence of relevant parameters in the extraction process, such as, composition of the membrane. Comparisons with 
previously reported experimental results in the literature by Argiropoulos et al. (1998) for typical situations are also 
performed. 
 
2. MATHEMATICAL FORMULATION OF THE PHYSICAL PROBLEM 
 

A typical process of polymeric membrane extraction is illustrated in Fig. 1, in which it is assumed that the first tank 
of the extraction cell presents a concentrated hydrochloric acid solution (HCl) that contains metallic gold, Au (III), with 
concentration CB1; and in the second tank there is a diluted solution of HCl of concentration CB2. The composition of the 
polymeric membrane consists of a mixture of Aliquat 336 and PVC, with concentration CA of Aliquat 336. Also, CAB 
indicates the concentration of the metallic complex in the membrane. 

The mathematical modeling of this process is obtained through application of mass conservation for the chemical 
species in the extraction cell for a given temperature, T, volume, V, and agitation, Ω for each half-cell and membrane 
thickness, δ. The extraction kinetic is considered to be a pseudo-first order chemical reaction, due to the presence of 
chloride ions in excess in the extraction cell, which is stirred constantly to warrant a uniform mixture: 
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Figure 1. Schematic representation of a membrane cell extraction. 
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Here, Am represents the extractant Aliquat 336 inserted in the membrane, Ba represents the metal in solution and 
ABm the complex metal in the membrane. In Eq. (1a), Kf1 and Kb1 are the forward and backward kinetic rate constants at 
position x=0 of the membrane, respectively. Similarly, Eq. (1b) brings the decomplexation reaction, where Kf2 and Kb2 
are the forward and backward kinetic rate constants at the position x=δ of the membrane. 

Since the concentration of metal in the feeding phase is higher than that in the stripping one, there is a metal 
concentration gradient between the two compartments of the extraction cell; therefore, the kinetic constant Kf1 is larger 
than Kb1, this way favoring the formation of ABm that by diffusion is transported to the stripping phase. On the other 
hand, a reverse behavior is encountered at x=δ, which correspond to Kb2 larger than Kf2, and consequently, the 
decomplexation of metal in stripping phase is dominant. 

Similarly to the work of Cardoso et al. (2007) for the analysis of extraction of Cadmium, this physical problem is 
represented by equations of mass conservation for the chemical species, which in dimensionless form are written as: 
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which are subjected to the following initial and boundary conditions: 
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The following dimensionless groups were employed in equations above: 
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where DA are DAB are the diffusion coefficients, L is the length of the extraction cell, which is defined as being the ratio 
of the cell volume to the membrane area surface exposed to the HCl solution; CA is the membrane concentration and 
CAB is the metal concentration in the membrane, δ is the membrane thickness, CB1 is the metal concentration at x=0 and 
CB2 is the metal concentration at x=δ. Also, it is assumed that the diffusion coefficient for the Aliquat chloride (DA) is 
equal to the diffusion coefficient of the complex metal-Aliquat (DAB). 

Through a mass balance in the membrane for the species Am and ABm, and assuming that the diffusion coefficients 
DA and DAB are equals, and consequently ξ=1, it is found 
 

AB A( , ) 1 ( , )θ η τ = − θ η τ   (13) 
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Introducing Eq. (13) into Eqs. (2) to (11), such equations are rewritten as 
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Now, in order to improve the computational performance, it is convenient to make a split-up procedure for the 
potential θA(η,τ) to homogenize the boundary conditions in the η direction, in the following form: 
 

A A,p A,h( , ) ( ; ) ( , )θ η τ = θ η τ + θ η τ   (22) 
 

In the particular potential θA,p(η;τ), variable τ is only a parameter, therefore, introducing Eq. (22) into Eqs. (14), (16) 
and (17), the solution for this particular function is obtained from 
 

2
A,p

2

( ; )
0,    0< <1

∂ θ η τ
= η

∂η
  (23) 

[ ]A,p
1 1 B1 A,p

(0; )
1 ( ) (0; ) 1

∂θ τ
− γ +β θ τ θ τ = −γ

∂η
;    [ ]A,p

2 2 B2 A 2
(1; )

1 ( ) (1; )
∂θ τ

+ γ +β θ τ θ τ = γ
∂η

 (24,25) 

 

The integration of Eq. (23) leads to the following solution for the particular potential θA,p(η;τ): 
 

A,p 1 2( ; ) C ( ) C ( )θ η τ = τ η+ τ   (26) 
 

and the coefficients C1(τ) and C2(τ) are obtained from the application of Eq. (26) into boundary conditions given by 
Eqs. (24) and (25), as 
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Finally, also from the introduction of Eq. (22) into Eqs. (14) to (21), the homogeneous problem becomes 
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2.1. Solution methodology 
 

The next step is to find a solution for the potential θA,h(η,τ), and for this purpose, it is followed the ideas in the GITT 
approach (Cotta, 1993), so that it has to be selected an appropriate auxiliary eigenvalue problem, which shall provide 
the basis for the eigenfunction expansion. Therefore, the following eigenvalue problem is proposed: 
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Equations (36) can be analytically solved to yield, respectively, the eigenfunctions and eigenvalues as 
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It can be shown that the eigenfunctions Φi(η) enjoy the following orthogonality property: 
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where Ni is the normalization integral, which together with the normalized eigenfunctions are, respectively, computed 
as 
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The auxiliary eigenvalue problem given by Eqs. (36) allows the definition of the following integral transform pair 
for the potentials θA,h(η,τ) as: 
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The next step is thus to accomplish the integral transformation of the original partial differential system given by 
Eqs. (28) to (35). For this purpose, Eqs. (28) and the initial condition (29) are multiplied by the normalized 
eigenfunctions, integrated over the domain [0,1] in η, and the inverse formula given by Eq. (38b) is employed. After the 
appropriate manipulations, the following coupled ordinary differential system results, for the calculation of the 
transformed potentials i ( )θ τ : 
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where the coefficients in Eq. (39a) are defined as follows: 
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Similarly, kinetic equations for the potentials θB1 and θB2, Eqs (32) to (35), are integral transformed as 
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In order to numerically handle the ODE system for the transformed potential given by Eqs. (39), together with the 
kinetic Eqs. (40) to (41) through the subroutine DIVPAG of the IMSL Library (1991), it is necessary to truncate the 
infinite series in a sufficiently high number of terms NT so as to guarantee the requested relative error in obtaining the 
original potentials. This subroutine solves initial value problems with stiff behavior, and provides the important feature 
of automatically controlling the relative error in the solution of the ordinary differential equations system, allowing the 
user to establish error targets for the transformed potentials. Therefore, such system is solved to compute the 
transformed potentials i ( )θ τ , as well as the potentials θB1(τ) and θB2(τ).Once this system is solved for the transformed 
potential, the inverse formula, Eq. (38b), is recalled to provide the potential θA,h(η,τ) and to furnish the complete 
concentration field. 
 
3. RESULTS AND DISCUSSION 
 

Numerical results for the Au (III) concentration distribution were obtained along the time evolution. For this 
purpose, a computational code was developed in FORTRAN 90/95 programming language and implemented on an 
INTEL CORE (TM) 2 DUO 2.13 GHz computer. The routine DIVPAG from the IMSL Library (1991) was used to 
numerically handle the system of ordinary differential equations given by Eqs. (39) to (41), with a relative error target 
of 10-8 prescribed by the user. For the simulation of the membrane composition influence, the experimental results of 
Argiropoulos et al. (1998) were fitted, which are shown in Tab. 1. Also, the length of the extraction cell was taken as  
L = 0.1 m. In addition, the computation of the membrane composition was based on the experimental data of 
Argiropoulos et al. (1998). 
 

Table 1. Model parameters for the computational simulation of Au (III). 
DA (m2/s) DAB (m2/s) Kb1 (m/s) Kb2 (m/s) Kf1 (m4/mol.s) Kf2 (m4/mol.s) δ (μm) L (m) CA0 (g/g) CB0 (mg/l) 

2.6x10-14 1xDA 8.5x10-11 10xKb1 6.35x10-9 0.95xKf1 13 0.1 22% 130 
8.5x10-14 1xDA 2.7x10-10 6.4xKb1 1.2x10-9 1xKf1 14 0.1 30% 100 
4.5x10-13 1xDA 1.25x10-10 13xKb1 1.1x10-9 1xKf1 13.5 0.1 40% 100 
2.5x10-10 1xDA 4.6x10-10 13xKb1 0.5x10-8 1xKf1 16 0.1 50% 100 

 



Table 2 shows the convergence behavior for the dimensionless concentrations of Aliquat 336, θA, as well as of 
metallic complex, θAB, in a membrane with 22% (w/w) of Aliquat 336. The analysis is done at different dimensionless 
positions and with times of 1.6, 80 and 160 h. As can be observed, a convergence of four digits is obtained for both 
concentrations with NT≤300. Also, it is verified an excellent behavior among the GITT results with those obtained with 
a Finite Difference Method (FDM) also here developed. 
 
 
 

Table 2. Convergence behavior of the dimensionless concentrations θA and θAB for a membrane with 22% (w/w) of 
Aliquat 336. 
Time=1.6 h 

θA θAB

η η NT 
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 

25 0.8031 0.8387 0.8670 0.8878 0.9016 0.1969 0.1613 0.1330 0.1122 0.0984 
50 0.8031 0.8387 0.8670 0.8878 0.9016 0.1969 0.1613 0.1330 0.1122 0.0984 
100 0.8031 0.8387 0.8670 0.8878 0.9016 0.1969 0.1613 0.1330 0.1122 0.0984 
200 0.8031 0.8387 0.8670 0.8878 0.9016 0.1969 0.1613 0.1330 0.1122 0.0984 
300 0.8032 0.8387 0.8670 0.8878 0.9016 0.1968 0.1613 0.1330 0.1122 0.0984 
400 0.8032 0.8387 0.8670 0.8878 0.9016 0.1968 0.1613 0.1330 0.1122 0.0984 
500 0.8032 0.8387 0.8670 0.8878 0.9016 0.1968 0.1613 0.1330 0.1122 0.0984 

FDM 0.8032 0.8387 0.8670 0.8878 0.9016 0.1968 0.1613 0.1330 0.1122 0.0984 
Time=80 h 

θA θAB

η η NT 
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 

25 0.6595 0.6738 0.6881 0.7024 0.7167 0.3405 0.3262 0.3119 0.2976 0.2833 
50 0.6595 0.6738 0.6881 0.7024 0.7167 0.3405 0.3262 0.3119 0.2976 0.2833 
100 0.6595 0.6738 0.6881 0.7024 0.7167 0.3405 0.3262 0.3119 0.2976 0.2833 
200 0.6595 0.6738 0.6881 0.7024 0.7167 0.3405 0.3262 0.3119 0.2976 0.2833 
300 0.6595 0.6738 0.6881 0.7024 0.7167 0.3405 0.3262 0.3119 0.2976 0.2833 
400 0.6595 0.6738 0.6881 0.7024 0.7167 0.3405 0.3262 0.3119 0.2976 0.2833 
500 0.6595 0.6738 0.6881 0.7024 0.7167 0.3405 0.3262 0.3119 0.2976 0.2833 

FDM 0.6595 0.6738 0.6881 0.7024 0.7167 0.3405 0.3262 0.3119 0.2976 0.2833 
Time=160 h 

θA θAB

η η NT 
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 

25 0.6827 0.6896 0.6965 0.7035 0.7104 0.3173 0.3104 0.3035 0.2965 0.2896 
50 0.6827 0.6896 0.6965 0.7035 0.7104 0.3173 0.3104 0.3035 0.2965 0.2896 
100 0.6827 0.6896 0.6965 0.7035 0.7104 0.3173 0.3104 0.3035 0.2965 0.2896 
200 0.6827 0.6896 0.6965 0.7035 0.7104 0.3173 0.3104 0.3035 0.2965 0.2896 
300 0.6827 0.6896 0.6965 0.7035 0.7104 0.3173 0.3104 0.3035 0.2965 0.2896 
400 0.6827 0.6896 0.6965 0.7035 0.7104 0.3173 0.3104 0.3035 0.2965 0.2896 
500 0.6827 0.6896 0.6965 0.7035 0.7104 0.3173 0.3104 0.3035 0.2965 0.2896 

FDM 0.6827 0.6896 0.6965 0.7035 0.7104 0.3173 0.3104 0.3035 0.2965 0.2896 
 

 
 

Figure 2 illustrates a comparison between the present GITT solution and that obtained with a Finite Difference 
Method (FDM). It can be noted an excellent agreement between the two methodologies, this way validating the 
numerical codes developed here. 

Finally, Figure 3 shows the influence of the membrane composition for the Au (III) extraction. From this figure, it is 
observed that the extraction is more efficient when greater contents of Aliquat 336 are utilized. For the case of 50% of 
Aliquat in the membrane, more than 80% of Au (III) is extracted after 50 h of contact time. Also, this figure shows a 
comparison of the present GITT results with those experimental results of Argiropoulos et al. (1998) evidencing a good 
agreement. The behavior of Aliquat 336 content in the extraction process can be explained by the L’Chatelier principle, 
since from Eqs. (1) one may see that an increase in its content promotes the displacement of equilibrium for the 
formation of complex metal AB in the membrane. 
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Figure 2. Comparison of the GITT and FDM approaches for the extraction of Au (III). 
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Figure 3. Influence of Aliquat 336 content in the membrane during the Au (III) extraction. 

 
 



4. CONCLUSIONS 
 

A study of membrane extraction process of gold Au (III) by using supported liquid membranes (SLM) was 
developed in the present work. The mathematical modeling of physical problem was done through the equations of 
mass conservation of chemical species, which were solved through the generalized integral transform technique (GITT), 
which provided reliable and cost effective simulations for the considered cases. Also, it was verified that the present 
GITT solution was in an excellent agreement with that developed with Finite Difference Method (FDM), this way 
offering a direct validation of the present results. The good agreement with the experimental results of Argiropoulos et 
al. (1998) demonstrated the consistency of this approach and adequacy for benchmarking such class of problems. 
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