
Proceedings of ENCIT 2008                                                                      12th  Brazilian  Congress of Thermal Engineering and Sciences 
Copyright © 2008 by ABCM November 10-14, 2008, Belo Horizonte, MG 

 

TWO-DIMENSIONAL HEAT CONDUCTION IN WALLS OF 
RECTANGULAR DUCTS 

 
Gustavo Adolfo Ronceros Rivas, gustavo@ita.br  
Ezio Castejon Garcia, ezio@ita.br 
Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes, 50 - Vila das Acácias  
CEP 12.228-900 – São José dos Campos – SP – Brasil .
 
Abstract. The present work treats about the development of a numerical method in which the main objective is analyze 
the two-dimensional heat conduction in plates and rectangular duct walls. Finite volumes (FV) and finite differences 
(FD) methods are employed; perfomance comparisons between both methods are fulfilled. For the case of rectangular 
ducts, four equations are solved (one for each wall of the duct) with different boundary conditions: prescribed 
temperature, convection and adiabatic. These four equations are coupled among themselves. Tri-diagonal Matrix 
Algorithm(TDMA) and/or Gauss-Seidel methods are employed to solve the equation system. A variable mesh is 
employed to discretize the continuo.  
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1. INTRODUCTION  
 

Rectangular cross section duct is a common geometry employed in much practical situations in thermal systems. In 
these systems, one or more modes of heat transfer occur, and they are relevant. For instance, this normally occurs in 
compact heat exchangers, air conditioning system, cooling channels in combustion chambers, gas turbine cooling 
system, etc. 

The heat conduction is a mode of heat transfers very important. The analysis of this mode can identify maximum 
and minimum temperatures, thermal gradients and heat fluxes in materials of thermal equipment. For these objectives, 
some methods can be used just as: experimental investigations, analytical solutions, and numerical solutions. In the 
present work, numerical solutions have been implemented to analyze the heat conduction. For this purpose, Finite 
Volumes (FV) and Finite Differences (FD) methods were employed to discretize the governing differential equations. 
They are made comparisons between FV and FD solutions. Also, Tri-Diagonal Matrix Algorithm (TDMA) and/or 
Gauss- Seidel methods are used to solve the governing equation systems, and they are made comparisons between both, 
too. Patankar (1980), Versteeg and Malalasekera (1995) describe the application the FV methods. They are very clear in 
the presentation of several situations of heat transfer applications, especially in the pure diffusion. Incropera and DeWitt 
(2003), Ferziger and Peric (2002) present interesting methodologies for the development of the finite difference 
methods, such as uniform and non-uniform grids, respectively. 

Kakaç and Yener (1985), and Ozisik (1980) present subject important in the development of analytical methods. In 
the present work is shortly described the separation variable method to make a comparison with the implemented 
numerical solutions. This work presents the analysis of the heat conduction in two-dimensional in plates and rectangular 
duct walls, steady-state without internal heat sources, with different boundary conditions such as imposition of 
temperature, convection and adiabatic on the contour. 
 
2. GOVERNING EQUATIONS  
 

The heat conduction equation is a mathematical relation, expressed by a differential equation, including temperature, 
space coordinate and time (Kakaç and Yener, 1985). Based in the application of First Thermodynamic Law, the general 
equation describing the heat conduction for solids can be written in the following vector form: 
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where  is the internal heat source, q& ρ is density, cp  is specific heat, 

t
T
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∂  the thermal transient. 

For rectangular coordinates, two-dimensional, isotropic material without internal heat sources and steady-state 
regime, the general heat conduction equation reduces to: 
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2.1. Finite difference method 
 

FD method is based on the transformation of continuous differential equations into discrete difference equations, 
suitable for numerical computing. The approximation of derivatives by finite differences plays a central role in finite 
difference methods for the numerical solution of differential equations, especially boundary value problems. A Taylor 
series can be used to calculate the value of derivatives in every point. Usually, the grid is locally structured, i.e. each 
grid node may be considered the origin of a local coordinate system, whose axes coincide with grid lines. Figure 1 
shows two-dimensional (2D) Cartesian grid used in FD method. 
 
 

 
 

Figure 1. Two-dimensional grid for FD method 
 
A continuous differentiable function, at a finite number of points near of “x”, can be expressed as a Taylor series: 
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where E means of highest order terms. Replacing “φ ” to “T”, and “x” to “ ” and “ ”, respectively, for case of 
uniform grid (Incropera and DeWitt, 2003): 
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Ignoring the highest order terms (above of second term), and making the necessaries arrangements, it is possible to 

obtain the second derivate for uniform grid: 
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For uniform grid, , Eq. (5) into Eq. (2), it is obtained: yx Δ=Δ
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For non-uniform grid, it is possible to evaluate the first derivative based on points between  and , and  

and , respectively (Ferziger and Peric, 2002): 
ix 1+ix ix

1−ix
 

http://en.wikipedia.org/wiki/Differential_equation
http://en.wikipedia.org/wiki/Difference_equations
http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Finite_difference_method
http://en.wikipedia.org/wiki/Finite_difference_method
http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Differential_equation
http://en.wikipedia.org/wiki/Boundary_value_problem


Proceedings of ENCIT 2008                                                                      12th  Brazilian  Congress of Thermal Engineering and Sciences 
Copyright © 2008 by ABCM November 10-14, 2008, Belo Horizonte, MG 

 

1

1

2/11

1

2/1

;
−

−

−+

+

+ −
−

≈⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−
−

≈⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

ii

ii

iii

ii

i xxxxxx
φφφφφφ

          (7) 

 
Equation (7) represents the central finite difference at the points “i+1/2” and “i-1/2”. Substituting Eq. (7) into Eq. (2), 
it obtains the expression for the second derivative, as follow: 
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Replacing Eq. (8) into Eq. (2), it obtains the expression algebraic for non-uniform grid. If makes , it drives to 
Eq. (6) again (uniform grid). 
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2.2. Finite volume method 
 

Equation (1), in steady-state and two-dimensional, can derive in the following: 
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where is the diffusion coefficient and S is the source term. k

The procedure to discretize Eq. (9), using FV method, is the following (Versteeg and Malalasekera., 1995): 
 

Grid generation: division of the two-dimensional domain into discrete control volumes, conform shown in the Fig. 
(2). 

 

 
 

Figure 2. Two-dimensional grid for FV method. 
 

Discretization: integration of the governing equation over a control volume to yield a discretized equation at its 
nodal point P, to obtain: 
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For uniform grid yAA we Δ==  and xAA sn Δ== . Thus we obtain: 
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If PPu TSSVS +=Δ , and making the heat flux across the east face q”= 
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similar form for the other faces, Eq. (11) can be rearranged to obtain the general discretized equation for interior nodes: 
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where the coefficients above are presented in the Tab. 1. 
 

Table 1. Coefficients of the Eq. (12).  
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Besides: 

• sets coefficient , where the underwritten “f” represents the volume on the contour; 0=fa

• for source contribution: f
ff

u T
Ak2

S
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2
, even so ψΔ  can be  or ; xΔ yΔ

• for prescribed heat flux :     fq ′′ fPPu qTSS =+         (13) 
 
Solution of the equation system: The linear algebraic equations result in a system, in which have to be solved to obtain 
the distribution of the property “T” for each nodal point. To solve this problem, two methods are employed: Tri-
diagonal Matrix Algorithm (TDMA, two-dimensional) and/or Gauss-Seidel. 
 
3. RESULTS 

 
In this item, comparisons between the FV and FD method developments are done. The language programming used 

for these was Compaq Visual FORTRAN. Uniform grid as well as non-uniform has been implemented and the results 
have shown very good concordance. Also, these results have been compared with commercial software. Figure 3 shows 
a gross uniform grid for a classic problem using FV method to analyze the temperature distribution in a given plate. 

The figure 4 show Results Comparison of error the FV, FD methods with one Commercial Software in the center 
the plate along the axis X as well as Gross Grid and Refined Grid, at the same time show the one difference the TDMA 
and Gauss Seidel methods. 
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Figure 3. Uniform Grid for FV method in the plate 
analysis 

 
 

Figure 4 shows result comparisons among FV, FD methods and Commercial Software. This presents the error in 
which is defined as the result difference between the analyzed developed program and the commercial software in 
which this one was used as a reference. The analysis are done at the center of the plate, Y = 0.2 m, along of the X-axis. 
Figure 4a presents the errors for 12x12 point gross grid as following: FD Method plus Gauss-Seidel, FV Method plus 
TDMA and FD Method plus Gauss-Seidel. Looking this Fig. 4a, we can say that the two FV methods seem to be better 
than FD method. Figure 4b presents the same methods in a 32x42 point refined grid; in this we can see that all errors 
have been reduced more than ten times, and FV methods have continued to have better behavior than FD. Thus, a 
comparing between the FV methods in refined grid, we can see that the FV+TDMA had the best performance. For this 
reason, the FV Method plus TDMA was chosen to solve the two-dimensional heat conduction problems in plates and in 
rectangular duct walls. 

Figure 5 compares the thermal profile results among FV and FD method, and Commercial Software. All them show 
good concordances themselves for grid of 32x42 points. The prescribed temperature for the North, South, East and 
West were 373K, 673K, 473K, 573K, respectively.  
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Figure 4. Results Comparison of error the FV, FD methods with one Commercial Software. in the center the plate along 
the axis X:   (a) Gross Grid; (b) Refined Grid. 
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Figure 5. Result Comparisons of thermal profiles among FV and FD method, and a Commercial Software. Analysis 
for plates: (a) Finite Volume and Gauss Seidel; (b) Finite Volume and TDMA ; (c) Finite Differences and Gauss 

Seidel; (d) Commercial Software. 
 
The Figures 6 and 7 shows the non-uniform grid for rectangular duct wall analysis: left side for gross grid; right 

side for refined grid, respectively.  The adopted strategy was to couple the four walls (as four plates) and solving one by 
one. When the temperature distribution for one wall was being calculated, another two worked as boundary condition to 
the first one. After the convergence for this one, now that worked as boundary condition to calculate the thermal profile 
to other one. And then, the process has continued until to obtain the final convergence. Once obtained all thermal 
profiles for four walls, these worked as boundary condition to solve energy equation of the internal duct fluid; but this is 
not the subject of this present paper. This is the main reason to utilize one non-uniform grids, once that to obtain the 
fluid thermal profiles are necessary fine grids to calculate thermal gradient near of the walls.  

This method of work, with the duct formatted with four coupled walls (or plates), permits to build and analyze a 
duct with four different materials, or different thermal conductivity. This situation demands attention on the contact 
among of the neighboring plates. 
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Figure 7 presents some calculated thermal profiles for duct walls. At left side of the Fig. 7 presents the output results 
from the FORTRAN developed program (FV Method plus TDMA). At right side presents the same profile obtained by 
commercial software. 
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Figure 6. Gross Non-Uniform Grid for Rectangular Duct 

Wall Analysis. 

 
Figure 7. Refined Non-Uniform Grid for Rectangular Duct 

Wall Analysis. 
 
The prescribed temperatures for the rectangular duct in the external surface of the duct, to the North, South, East 

and West were of 673K, 773K, 673K, and 773K, respectively.  The gross grid was of 5 x 12 points for example for the 
plate West (Fig. 6), for a refined grid was of 18 x 83 points for example for the plate West (Fig. 7). 
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Figure 8. Thermal Profile Comparisons in the Duct Walls: a) at left: result from of the developed Fortran Program using 
FV method; b) at right: commercial software result. 
 
 
 
 
 

 
 



4. CONCLUSIONS 
 

There have been done comparisons between two numerical approaches of discretization, FV and FD methods, with 
two equations systems solutions: Gauss Seidel and Tri-Diagonal Matrix Algorithm (TDMA).  They were implemented 
in the Fortran programming language. The objective was develop methods for calculate the distributions of temperature 
in a plate, with uniform and non-uniform grids. For the case of prescribed temperature, the method FV using TDMA, is 
going to represent a solution more close to a commercial software, that was adopted like a reference. 

The redefined non- uniform grid, Fig. 7, can be used for the coupled of the fluid-solid.  The redefined grids in the 
corners are ideal to simulate a viscous flow. 

Still, it can be taken advantage of the analysis code for the heat conduction in thermal contact between plates with 
different materials, or be, with different thermal conductivities. This situation is very common in thermal systems. 

As final conclusion, it can be cited that for certain specifics problems, as is the case of rectangular ducts, the use of 
a very refined non-uniform grid has good contribution for the calculations of thermal gradients.   
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