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Abstract. This work presents a critical comparison of experimental results and hybrid numerical-analytical solutions 
for transient laminar forced convection over flat plates of non-negligible thickness, subjected to time variations of the 
applied wall heat flux at the interface fluid-solid wall. This conjugated conduction-convection problem is first 
simplified through the employment of the Coupled Integral Equations Approach (CIEA) to reformulate the heat 
conduction problem on the plate by averaging the related energy equation in the transversal direction. As a result, a 
partial differential formulation for the transversally averaged wall temperature is obtained, and rewriting the 
boundary condition for the fluid in the heat balance at the solid-fluid interface. From available velocity distributions, 
the solution method is then proposed for the coupled partial differential equations within the thermal boundary layer, 
based on the Generalized Integral Transform Technique (GITT) under its partial transformation mode, combined with 
the method of lines implemented in the Mathematica 5.2 routine NDSolve. For the experimental results, an apparatus 
was employed involving an air blower to cool and flash lamps to heat a vertical PVC plate of 33 cm in length and 12 
mm in thickness, while the exposed surface temperature is measured by infrared thermography. Fluxmeter and 
thermocouple measurements are also utilized to covalidate the infrared camera measurements and to provide estimates 
of heat losses. The transient evolution of the measured surface temperatures along the plate length are critically 
compared against the simulation results, and the model is then analyzed to illustrate the major effects that require 
further treatment  for a closer agreement with the experimental findings.  
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1. INTRODUCTION 
 

The analysis of conjugated convection-conduction heat transfer problems has been challenging thermal 
sciences researchers along the last few decades, since the pioneering work of (Perelman, 1961) and (Luikov et al., 1971; 
Luikov, 1974). In engineering practice, most conjugated problems are handled in an iterative manner, by successively 
solving the convection and conduction problems, or just by fully neglecting the coupling between the two phenomena 
when accuracy is not at a premium. On the other hand, advanced design methodologies nowadays benefit from widely 
available automatic software for computational fluid mechanics and heat transfer, based on classical discrete numerical 
approaches (Minkowycz et al., 2006). Nevertheless, it remains of interest to provide more accurate approaches and, at 
the same time less computationally intensive, to this class of problems, which frequently appear in thermal engineering 
applications. Hybrid numerical-analytical approaches are particularly well-suited in providing solutions to conjugated 
problems, which may lead to both accuracy improvement with respect to the simplified engineering approaches and 
reduced computational involvement in comparison to purely numerical methods, as illustrated within a number of 
contributions (Guedes et al., 1991; Vynnycky et al., 1998; Mossad, 1999; Pozzi & Tognaccini, 2000; Lachi et al., 2003). 
One such hybrid approach that has been previously employed in the solution of conjugated problems is known as the 
Generalized Integral Transform Technique (GITT), belonging to a class of methods that combine eigenfunction 
expansions with the numerical solution of transformed ordinary differential systems (Cotta, 1993; Cotta & Mikhailov, 
1997; Cotta, 1998, Santos et al., 2001; Cotta & Mikhailov, 2006). 

In addition, the analysis of transient forced convection problems has renewed the interest on conjugation 
effects interpretation, in light of the marked influence of both thermal capacitance and resistance of the solid walls on 
the flowing fluid thermal behavior (Cotta et al., 1987; Guedes & Cotta, 1991; Guedes et al., 1994; Lachi et al., 2006). A 



number of mixed experimental and theoretical works have also been reported in an attempt to quantify and covalidate 
the convective behavior under such transient conjugated conditions (Remy et al., 1995; Rebay et al., 2002; Rebay et al., 
2008). Also quite recently, a hybrid solution again based on the Generalized Integral Transform Technique has been 
proposed to transient conjugated conduction-external convection problems, (Naveira et al., 2007; Naveira et al., 2008), 
which provided important physical interpretation of the heat flux transient partition between the solid and the fluid for 
an imposed heat flux at the solid-fluid interface. The next step is thus the critical comparison of experimental and 
theoretical results for such transient conjugated situation, in an attempt to validate the modeling and hybrid solution 
methodology for this class of problems. For this purpose, a more general formulation than the one proposed in (Naveira 
et al., 2008) is here considered, and the experimental apparatus described in (Rebay et al, 2008) is employed in 
acquiring the transient thermal behavior of a laminar air flow over a PVC plate heated with flash lamps. Experiments 
and simulations are then critically compared so as to investigate the different aspects to be improved in either the 
modeling or the experimental procedure, towards a more perfect matching between the two prediction approaches. 

 
2. THEORETICAL ANALYSIS 
 

The problem here analyzed is a more general version of that proposed by (Naveira et al., 2007; Naveira et al., 
2008), so as to adequate the formulation to the experimental conditions, later to be discussed. It involves laminar 
incompressible flow of a Newtonian fluid over a flat plate, with steady-state flow but transient convective heat transfer 
due to a time and space variable applied heat flux, φ(x*,t), at the solid-fluid interface. The fluid flows with a free stream 
velocity u∞ , which arrives at the plate front edge at the temperature T∞ (t), which may vary along the process. The wall 
is considered to participate on the heat transfer problem, with thickness, e, and length, L. The boundary layer equations 
are assumed to be valid for the flow and heat transfer problem within the fluid. Thus, the energy equations for the fluid 
and for the solid are given by: 
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with initial, boundary and interface conditions  
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As compared to the analysis in (Naveira et al., 2008), the proposed problem, eqs.(1), incorporates the possibility of heat 
losses through all the solid boundaries that are not in direct contact with the flowing stream, through the specification of 
heat transfer coefficients at the boundary conditions (1h, 1j, and 1k), besides the time varying free stream temperature 
and space and time variable prescribed interface heat flux. 
The formulation is now simplified through the proposition of a lumped formulation for the wall, integrating its 
temperature field along the transversal direction, y*. Instead of employing the Classical Lumped System Analysis, 
which essentially assumes the wall temperature field to be uniform in the transversal direction, an improved model is 
proposed obtained via the coupled integral equations approach (C.I.E.A.) (Cotta & Mikhailov, 1998), based on Hermite-
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type approximations for integrals. We consider just the two approximations, 0,0H  and 1,1H , which correspond, 
respectively, to the well-known trapezoidal and corrected trapezoidal integration rules, given by: 
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The transversally averaged wall temperature is then approximated by taking the 1,1H  approximation, the corrected 
trapezoidal rule. In addition, the transversally averaged wall heat flux is approximated by 0,0H   approximation, the 
trapezoidal rule. This 1,1H / 0,0H   combined solution does not change the nature of the problem in comparison with the 
classical lumped formulation, but only modifies the equation coefficients. Also, it has been shown to be significantly 
more accurate than the classical lumped system analysis in the applicable range of the governing parameters (Cotta & 
Mikhailov, 1998).  
The transversally averaged wall temperature, av ( *, )T x t , is thus approximated as: 
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The average heat flux is approximated as: 
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An expression for the temperature at *y e= − , is thus obtained from eq.(3a): 
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This expression is substituted into the average heat flux expression, eq.(3b), providing: 
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For no heat losses at the back face of the plate, i.e., he=0, as shown in (Naveira et al., 2008) the above relation is 
reduced to: 
 

s
avf

* 0

3 ( *,0, ) ( *, )
* y

T T x t T x t
y e=

⎡ ⎤⎣ ⎦
∂ = −
∂

                                                                    (4c) 

 
The interface condition (1g) is then written as: 
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The energy equation for the solid is now reformulated by taking the average on the transversal direction, operating with 
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We can then eliminate the derivatives at * 0y = and at *y e= −  by applying the boundary condition eq.(1h), and the 
developed expressions (4a,b), to find: 
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Again, for no heat losses at the back face of the plate, i.e., he=0, the above reformulated energy equation simplifies to: 
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This lumped-differential equation is complemented by the also averaged initial and boundary conditions: 
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The conjugated conduction-convection problem can also be rewritten after introducing dimensionless variables: 
 

ref
f

*
t

L f s t
ref f

f

0f
w 0

ref s

. (0)* *, , , , , ,.

( ) (0) . . .( ) , , , , ,.

. . ., , , , ,

s

e L
e L

s s s

u t T Tu v x yU V x y Lu u L L L
k

T t T u L u L u eRe Pe PeL L
k

h e h Lk h LeQ R Bi Bi Bi
L k k k k

∞ ∞

∞ ∞

∞ ∞ ∞ ∞ ∞
∞

−
= = = = = =

−
= = = = =

= = Κ = = = =

τ θ
φ

δ
θ τ δ

φ ν α α

φ
φ

                (7) 

 
The flow problem solution is considered known, by any chosen approximate analytical or numerical solution technique. 
The thermal problem is essentially confined to a region here represented by the steady thickness t ( )xδ , which just 
needs to be large enough to encompass the actual thermally affected region throughout the transient process. However, 
it is of interest to avoid the proposition of eigenfunction expansions with variable eigenvalues along the longitudinal 
coordinate and the time variable. Therefore, we introduce a domain regularization transformation for the spatial domain 
written as: 
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The dimensionless form for the fluid energy equation after the domain transformation is given by: 
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where 
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The initial and boundary conditions become: 
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And the wall energy equation with the respective initial and boundary conditions are given by: 
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The flow problem is readily solved according to Blasius similarity transformation, which provides the velocity 
components to feed into the decoupled transient energy equation. For the thermal problem solution, since there is a 
preferential convective direction aligned with the flow, the integral transformation was chosen to be operated solely in 
the transversal direction, along which diffusion predominates. However, equations (9) are still not in the most 
convenient form for integral transformation, since the boundary condition at the interface involves a non-homogeneous 
term. A filtering solution is then proposed, so as to eliminate the non-homogeneous boundary condition, in the form:  
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As in (Naveira et al., 2008), a straightforward second degree polynomial filter is proposed, t( ; , )F η χ τ , where andχ τ  
become parameters of the solution. The filter is obtained from satisfaction of the following three boundary conditions at 
the transversal domain edges: 
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Thus, applying the proposed filtering solution to eqs.(9), the resulting filtered problem is given by:  
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with initial and boundary conditions:  
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The wall energy equation, eq.(10a), is also modified to incorporate the proposed filtering solution, eq.(11). 

 Proceeding with application of the Generalized Integral Transform Technique, the proposed auxiliary 
eigenvalue problem is written as:  
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which is readily solved to yield eigenfunctions, eigenvalues, norms, and normalized eigenfuntions,  respectively, as: 
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The eigenvalue problem (14) allows definition of the following transform-inverse pair: 
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The wall heat transfer problem can then be described by the partial differential equation (10a) coupled to the 

transformed fluid temperature fields. Equations (17) and (10) form an infinite coupled system of one-dimensional 
partial differential equations for the fluid transformed potentials and the wall average temperature. For computational 
purposes this system is truncated to a sufficiently large finite order, N, for the required convergence control. Once the 
transformed potentials are numerically computed, the inversion formula, eq.(16b), is employed to reconstruct the 
filtered potentials, in explicit form in the transversal coordinate, and after adding the filtering solution, t( ; , )F η χ τ , the 
dimensionless temperature distribution, t( , , )fθ χ η τ , is recovered everywhere within the boundary layer and along the 
transient process. The PDE system is then numerically handled by routine NDSolve of the Mathematica v.5.2 system 
(Wolfram, 2005). 
 
 
3. EXPERIMENTAL PROCEDURE 
 

An experimental set-up was assembled for the measurement by an infrared camera of both temporal and spatial 
evolutions of the temperature on the front surface of a 330x250 mm² black PVC plate (Figure 1). The plate (1) was 
heated by two flash lamps that have been placed normally to its front face. The plate is maintained vertically at the 
outlet of a rectangular channel, with 300x250 cross flow section (2). The plate contains multilayer fluxmeters, for the 
incident heat flux measurements The airflow, generated by a double aspiration fan (3), was directed via a flow calming 
section in the channel with 700 mm in straight length. This channel allows the airflow to be parallel to the plate and 
covering the entire of its width. An AC converter voltage (4) controls the fan. The flow velocity associated with each 
voltage used in the tests was preliminary measured by a propeller anemometer on the outlet section of the channel.  

Cartographies of temperature distribution had been obtained by a short-wave infrared camera (5). For 
recording the infrared frames, the camera was connected to the digital interface box (6). A cable connects the interface 
box to a break out box, from which a second cable is connected to the PCMCIA card interface mounted on a station (7). 
The proprietary software allows recording infrared images with 50 Hz sample rate.  

The transient process is generated by a sudden supply of the luminous energy, with a fixed duration, given by 
two halogen lamps (8) on the front face of the plate. The pulse duration was controlled by an electronic timer (9), and 
could be fixed in the range 0.1 second – 5 hours with an accuracy of 0.02 second. The analysis of Infrared images 
allows the calculation of the induced elevation of the temperature at each fixed point on the front surface of the plate. 

The described set-up was designed in the Laboratory UTAP-Thermomécanique, Université de Reims, for the 
specific purpose of convection heat transfer investigations. It allows a certain degree of flexibility to adapt the system to 
a range of different problems such as conjugated heat transfer or cooling of electronic cards.  
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Figure 1 : Experimental setup for conjugated convection-conduction analysis 

 
4. RESULTS AND DISCUSSION 
 
       The experimental configuration considered in the present analysis, adopts a black PVC plate of 33 cm in height, 
thickness of 12 mm and 25 cm wide. The configuration was aimed at insulating the PVC plate within a Styrofoam 
assembly of 8cm in thickness at the back face and 3.8 cm at the lateral faces. The flash lamps are maintained 
continuously heating the plate at the same power level.  

The thermophysical properties of the black PVC were measured on the Netzsch Nanoflash LFA 447/1 available in 
the Laboratory of Heat Transmission and Technology (LTTC/COPPE/UFRJ). The LFA 447/1 is a tabletop instrument 
that works with a high power Xenon-Flash lamp in the temperature range of room temperature to 200°C, and it has an 
integrated sample changer for 4 samples. The LFA 447/1 is capable of measuring thermal diffusivity in the range of 
0.01 mm2/s up to 1000 mm²/s, with an accuracy of 3-5% for most materials. The specific heat accuracy is 5-7%. This 
allows the calculation of the thermal conductivity in the range of 0.1 W/mK 2000 W/mK with an accuracy of 3-7% for 
most materials (Pinto et al., 2006). The analysis of experimental data was performed with a software called Proteus, 
provided by Netzsch, providing the following thermophysical properties estimates at 25 C: α=0.144 mm2/s, k=0.164 
W/mC, and cp=798 J/kgC.  

Thermograms were constructed for the transient evolution of the front face temperatures, such as shown in Figure 
2, here for the case of an imposed interface heat flux of φ=428 W/m2 starting at t=480s. Also, temperature 
measurements at the back face of the plate and insulating material were registered to allow estimation of the heat losses. 
For this situation of an insulated plate, an effective heat transfer coefficient representing the heat losses through the 
insulating material on   the back face was estimated as he =2.4 W/m2C, while at the trailing edge the estimated value is 
given by hL =1.6 W/m2C. The heat transfer at the leading edge has been neglected (h0 =0). However, since there is a 
significant uncertainty in such estimated heat transfer coefficients, especially at the back face, due to their variability 
with time and space, the simulations were performed with both the estimated value and the perfectly insulated 
assumption(he=h0=hL=0). Also, one may see from Figure 2 that the free stream temperature is fairly variable along the 
heating process, and thus it should be considered in the model. Therefore, Figures 3 present a comparison of the 
experimental (red curve) and theoretical results (black and green curves) for the temperature evolutions at the plate front 
face, for the selected positions x=11.3, 17.6, 21.1, and 28.3 cm. In general, the set of results for the estimated effective 
heat losses (black curves) presents a fairly reasonable agreement against the experimental results (red curves), with 
improved adherence for larger x positions along the plate and towards larger time values. On the other hand, the 
perfectly insulated case (green curves) provides an upper limit for the front face temperature predictions, which aid in 
encapsulating the experimental results. Clearly, the perfectly insulated case overestimates the front face temperatures at 
the larger time values, and the crossing of the two curves indicates that the constant heat transfer coefficient along the 
whole transient process might not adequately model such heat losses, especially at the plate back face, which actually 
controls the losses by providing a fairly large exchange surface. The nonuniformity of the heat transfer coefficient along 
the plate height also influences the deviations of experimental and theoretical findings, with the improved agreement for 
larger values of x. Figure 4.a, on the other hand, provides an indication that the assumption of a constant free stream 
temperature would have led to underestimated front face temperatures along the whole plate length, especially for the 
steady-state situation here approached with t=18600 sec, by showing both theoretical results (T¶=const. in green and 
T¶(t) in black) compared against the experimental results (red curve). Figure 4.b, also compares the steady-state results, 
but for the cases of estimated heat losses and idealized insulated plate, encapsulating the experiment. Figures 4 also 
show that there exists significant flow recirculation around the leading edge of the plate, due to the positioning of the 
plate within the air stream, and that some improvement on this flow arrangement is required for a more adequate 
comparison of the heat transfer results from the present boundary layer modeling, especially for regions close to the 
plate leading edge. Such results in part explain the lower temperature values attained by the boundary layer theoretical 
analysis for lower values of the longitudinal position x. 
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 Figure 2 : Thermograms of acquired temperature evolutions with infrared camera (black PVC plate, e=12 mm, 

φ=428.16 W/m2, u•=2.5 m/s, insulated back and lateral faces). 
 

  

  
Figures 3: Comparison of transient behavior of front face temperatures along the plate height (x=11.3, 17.6, 
21.1, and 28.3 cm), theoretical (green for insulated, and black with heat losses) and experimental (red). 

 

  
Figure 4.a: Comparison of steady-state 

temperature distributions, from experiments 
(red), model with T•=const. (green) and T•(t) 

(black). he=2.4 W/m2C and hL=1.6 W/m2C 

Figure 4.b: Comparison of steady-state temperature 
distributions, from experiments (red), model with 
T•(t) and insulated plate (green) and heat losses 
with he=2.4 W/m2C and hL=1.6 W/m2C (black) 
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