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Abstract. This work presents numerical simulation methods for two types of three-dimensional fluid flows: the free and
the stratified turbulent flows, both applied to study and forecast the environmental impacts caused by hydro-electrical
power plant reservoir floodings. In this type of problems the correct parametrization of the turbulent fluxes is essen-
tial to obtain realistic simulations. The numerical simulation methods employ the Finite Element Method (FEM) ap-
proximation of Reynolds-averaged Navier-Stokes (RANS) equations. The convective terms are discretized employing the
Semi-Lagrangian method and the spatial discretization is based on the Galerkin method. The time discretization is semi-
implicit, resulting in an unconditionally stable scheme. Eddy-Viscosity models for free and for stratified turbulent flows
are incorporate into the RANS equations. The computational results of reservoir simulations employing the implemented
methods are presented and the effect of the parametrization is discussed.

Keywords: Numerical simulation, Reynolds averaged Navier Stokes (RANS), Finite Element Method (FEM), eddy viscos-
ity, turbulence stratified flow.

1. INTRODUCTION

Several fluid motion phenomena, such as circulation in the atmosphere and the ocean (Fernando and Hunt, 1996),
applications in lakes (Imberger and Ivey, 1991), in estuaries (Huang et al., 2003), and engineering application such
as thermal nuclear reactors (Andreania et al., 2008), are stratified turbulent flows. The velocity gradient can lead to
generation of turbulence in the usual way through the action of inertia forces, and the density gradient of the fluid due
to the difference of temperature or salinity, depending on its sign, can provide an additional source of energy for the
turbulence (Tritton, 1988).

The modeling of stratified flows normally involves the modeling of internal turbulence processes. This constitutes a
difficulty, since there is a lack of reliable and efficient models to account for the effects of turbulence (Sotiropoulos, 2005).

There is a large literature about model turbulent flows. Although, classical techniques such as the Direct Numerical
Simulation can be used, they requires large computational resources in practical engineering situations. A more realistic
and useful (for engineering purposes) tool is based on statistical turbulence models. In this article, we perform the
numerical simulation of the turbulent stratified flows using the Reynolds-averaged Navier-Stokes (RANS) equations with
an appropriate turbulence model. This provides a better understanding and realistic prediction of the flows, which is
necessary to study and forecast the environmental impacts caused by hydro-electrical power plant reservoir flooding.

In this context, the main objective of this article consists in describing the methodology employed for the turbulent
exchanges at momentum and scalar quantities in cases of stable and unstable density gradients.

Initially, the RANS equations and the turbulence model used for the free and stratified flow are presented in Section
2. Afterward, in Section 3, we show the discretization method to solve the differential equations system. Specifically the
MINI tetrahedral element for the momentum equations and continuity, and the linear tetrahedral element for the scalar
quantities are used. In the Section 4, some results of the numerical simulations, on a simple 3D geometry are presented.

2. TURBULENCE EQUATION

In this section, we present the derivation of the RANS equations and then discuss the eddy viscosity model, specifically
the algebraic model applied to numerical simulation. At last the turbulent modeling for stratified flow is shown.

2.1 Derivation of RANS equations

The instantaneous motion of an incompressible and Newtonian fluid denoting mass and momentum conservation are
governed by the 3D, incompressible Navier-Stokes (NS) equations:

∂ui
∂xi

= 0 (1)
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∂ui
∂t

+
∂(uiuj)
∂xj

= −1
ρ

∂p

∂xi
+

1
ρ

∂τij
∂xj

+ gi (2)

where ui(i = 1, 2, 3) are the instantaneous velocity components, xi(i = 1, 2, 3) are the coordinate axes with direction 3
vertically upward, p is the instantaneous pressure, ρ is the density, τij(i, j = 1, 2, 3) are the components of the viscous
stress tensor and gi is the gravitational acceleration.

The stratification-inducing scalar Θ (temperature or salinity) is considered governed by:

∂Θ
∂t

+
∂Θuj
∂xj

=
∂

∂xj

(
α
∂Θ
∂xj

)
+ SΘ (3)

where SΘ is a source or sink of Θ and α is the molecular (heat or mass) diffusivity coefficient.
For a Newtonian fluid the stress tensor is related to the rate of strain tensor as follows

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
(4)

where µ is the molecular viscosity.
The statistical description for a turbulent flow based on Reynolds decomposition (in order to describe the velocity ui,

pressure p and scalar Θ) decomposes each state variable into a mean value plus a random fluctuating part. Therefore, the
decomposition of the velocity ui(x, t) takes the form

ui(x, t) = ui(x) + u′i(x, t) (5)

where ui is the mean velocity and u′i(x, t) is the random fluctuation part. The mean velocity is given by

ui(x) = lim
T→∞

1
T

∫ t+T

t

ui(x, t) dt (6)

where the averaging interval T is taken to be much longer than the longest turbulent fluctuations in the flow.
Using the Eq. (5) and averaging the Eq. (1)-(3), we obtain the following Reynolds-averaged Navier-Stokes (RANS)

equations:

∂ui
∂xi

= 0 (7)
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+
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∂xj

= −1
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+ gi (8)
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∂t

+
∂Θuj
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=
∂
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α
∂Θ
∂xj
−Θ′u′j

)
+ SΘ (9)

The quantity
(
−ρu′iu′j

)
in the Eq. (8) is known as the Reynolds stress tensor. This tensor is symmetric, and thus has

six independent components. Consequently the RANS equations system is unclosed. In order to make the system (7)-(9)
solvable, we use the Boussinesq eddy-viscosity approach.

2.2 Eddy-viscosity model

The Boussinesq eddy-viscosity approximation is used to compute the Reynolds stress tensor as the product of an eddy
viscosity and the mean strain-rate tensor.

The eddy-viscosity hypothesis, is mathematically analogous to the strain-rate tensor relation for a Newtonian fluid.
According to the hypothesis, the deviatoric Reynolds stress

(
−ρu′iu′j + 2

3ρkδij

)
is proportional to the mean strain-rate,

−ρu′iu′j +
2
3
ρkδij = 2ρνtSij , Sij =

1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
(10)

where the mean turbulent kinetic energy per unit mass in the fluctuation velocity field is defined as k = 1
2u

2
i , δij is the unit

tensor (Kronecker’s delta), and the positive scalar coefficient νt is the turbulent viscosity (also called the eddy viscosity).
The mean-momentum equation incorporating the eddy-viscosity hypothesis (i.e., Eq. (10)) substituted into Eq. (8) is
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where

νeff(x, t) = ν + νt(x, t) (12)

is the effective viscosity, with kinematic viscosity ν = µ
ρ . This is the same as the Navier-Stokes equations with ui and νeff

in place of ui and ν, with p+ 2
3ρk the modified mean pressure (Pope, 2000).

Following the same argument, the turbulent flux
(
−Θ′u′

)
is proportional to the mean scalar gradient, i.e.,

−Θ′u′ = αt
∂Θ
∂xj

(13)

where αt is the turbulent diffusivity. Substituting into Eq. (9), we have

∂Θ
∂t

+
∂Θuj
∂xj

=
∂

∂xj

(
αeff

∂Θ
∂xj

)
+ SΘ (14)

where

αeff(x, t) = α+ αt(x, t) (15)

is the effective diffusivity.
Eddy-viscosity models express νt as the product of a turbulence length scale, lt, and a turbulence velocity scale, ut:

νt = ltut (16)

and the task of specifying νt is generally approached through specifications of lt and ut. In algebraic models, lt is specified
on the basis of the geometry of the flow.

2.3 Algebraic models

Algebraic models rely on Prandtl’s mixing-length hypothesis. By drawing an analogy with the molecular momentum
transport process and replacing the molecular thermal velocity and mean free path with characteristic turbulent velocity
and length scale. For 3D flows, the mixing length model, used in conjunction with Eq. (10), can be generalized as follows
(Sotiropoulos, 2005):

νt = 2l2t
√
SijSij (17)

The mixing-length lt, is an empirical quantity that is typically assumed to be proportional to some characteristic length
scale of the flow and needs to be specified using input from experiments.

2.4 Turbulence modeling for stratified flows

For problems in which the density gradients are not large, the governing equations can be greatly simplified by invoking
the so-called Boussinesq approximation and accounting for density variations only in the gravity term. The Boussinesq
form of the Reynolds-averaged transport equations for mass, momentum and scalar (temperature or salinity) transport
read as follows (Sotiropoulos, 2005):

∂ui
∂xi

= 0 (18)
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= − 1
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(19)
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)
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where ρ is the local fluid density and ρr is a reference density. The local density is related to the temperature or salinity
via an equation of state of the following form:

ρ− ρr
ρr

= −β(Θ−Θr) (21)

where, in case the local density is related to the temperature, β is the thermal expansion coefficient.
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Stratification effects are typically parametrized in terms of the gradient Richardson number, the ratio of the local
production of turbulence due to buoyancy effects to that due to mean shear:

Ri = −g
ρ

∂ρ/∂z

(∂u/∂z)2 (22)

where z is the direction of stratification. This number depends on the sign of the density gradient but not on that of the
velocity gradient. Negative Richardson number corresponds to a destabilizing density gradient; both shear and buoyancy
give rise to turbulence generation. Positive Richardson number corresponds to a stabilizing density gradient; turbulent
motion cannot be sustained when Ri becomes large (Tritton, 1988). By setting a critical level of Ri, Ric, beyond which
turbulence cannot be sustained, a mixing-length model modified for stratification effects can be formulated as follows
(Sotiropoulos, 2005):

Stable stratification (Ri > 0)

νt =

{
2l2t
√
SijSij (1−Ri/Ric)2 0 ≤ Ri ≤ Ric

0 Ri ≥ Ric
(23)

Unstable stratification

νt = 2l2t
√
SijSij (1−Ri)1/2 (24)

Choosing Ric to be a small value (say one or less) suppresses the eddy viscosity to a very small level in regions of the
flow away from shear zones (Sotiropoulos, 2005). The turbulence is almost completely suppressed when Ri reaches 0.45
(Tritton, 1988).

3. FINITE ELEMENT METHOD

In this section, we show the variational approach of the presented equations. Then, the Galerkin method for spatial
discretization and semi-Lagrangian method for the convective terms discretization are briefly presented.

3.1 Variational approaches

Rewriting the Reynolds-averaged transport equations for mass (Eq. (18)), momentum (Eq. (19)) and the stratification-
inducing scalar (Eq. (20)) using the vectorial notation, read:

∇ · u = 0 (25)
Du
Dt

= − 1
ρr
∇p+∇ · (2νeffS) + g

ρ− ρr
ρr

(26)

DΘ
Dt

= ∇ · (αeff∇Θ) + SΘ (27)

where, the substantive derivative operator D/Dt is defined as

D

Dt
=

∂

∂t
+ u · ∇ (28)

Equations (25)-(27) are defined in a domain Ω ⊂ Rm with the following boundary conditions

u = uΓ on Γ1 (29)

p = pΓ on Γ2 (30)

Θ = ΘΓ on Γ3 (31)

The variational approach of the problem read: Seek u(x, t) ∈ {u ∈ H1(Ω)m : u = uΓ on Γ1}, p(x, t) ∈ {p ∈
H1(Ω) : p = pΓ on Γ2} and Θ(x, t) ∈ {Θ ∈ H1(Ω) : Θ = ΘΓ on Γ3}, such that∫

Ω

[∇ · u] q dΩ = 0 (32)∫
Ω

Du
Dt
·w dΩ− 1

ρ

∫
Ω

p∇ ·w dΩ +
∫

Ω

2νeffS : ∇w dΩ−
∫

Ω

ρ− ρr
ρr

g ·w dΩ = 0 (33)∫
Ω

DΘ
Dt

r dΩ +
∫

Ω

(αeff∇Θ)∇rT dΩ−
∫

Ω

SΘr dΩ = 0 (34)

where, w ∈ {w ∈ H1(Ω)m : w = 0 on Γ1}, q ∈ {q ∈ H1(Ω) : q = 0 on Γ2}, r ∈ {r ∈ H1(Ω) : r = 0 on Γ3}, and
H1(Ω) is the Sobolev space of degree 1, which is subset of functions that possess square-integrable generalized derivatives
through order 1.
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3.2 Galerkin method

For the implementation, the Eq. (32)-(34) is discretized using the standard Galerkin method, where the spaces of
functions are replaced by finite dimensional subspaces. The following linear spatial approximation of the variables in
space is used:

ui(x, t) ≈
NV∑
n=1

Nn(x)uin(t) (i = 1, 2, 3) (35)

p(x, t) ≈
NP∑
n=1

Pn(x)pn(t) (36)

Θ(x, t) ≈
NΘ∑
n=1

Rn(x)Θn(t) (37)

where, NV is the number nodes of velocity, NP is the number nodes of pressure, NΘ is the number nodes of scalar and
Nn(x), Pn(x) and Rn(x) are the shape functions. On employing the Galerkin weighting to Eq. (32)-(34), is obtained the
following linear system of ordinary differential equations:

Dũ = 0 (38)

M ˙̃u+KM ũ−Gp̃+ b = 0 (39)

MΘ
˙̃Θ +KΘΘ̃ + c = 0 (40)

where, ũ = [u11, · · · , u1NV , u21, · · · , u2NV , u31, · · · , u3NV ]T ∈ R3NV , p̃ = [p1, · · · , p1NP ]T ∈ RNP and Θ̃ =
[Θ1, · · · ,Θ1NΘ]T ∈ RNΘ are the unknowns at nodes of velocity, pressure and scalar respectively, D ∈ RNPxR3NV

is the divergence matrix, G ∈ R3NV xRNP is the gradient matrix, M ∈ R3NV xR3NV is the mass matrix, KM ∈
R3NV xR3NV is the momentum diffusion matrix, MΘ ∈ RNΘxRNΘ is the scalar mass matrix, KΘ ∈ RNΘxRNΘ is the
scalar diffusion matrix, b ∈ R3NV is the forcing vector due to buoyancy force and c ∈ RNΘ is the forcing vector due to
the scalar source. Notice that b is related with scalar Θ by the Eq. (21) and ˙̃u and ˙̃Θ represent the substantive derivatives
of ũ and Θ̃.

The tetrahedral MINI element is selected to discretize the velocity and the linear tetrahedral for the pressure and the
scalar Θ.

3.3 Semi-Lagrangian method

The ordinary differential equations system (Eq. (38)-(40)) is solved employing the semi-Lagrangian method for time
discretization. Because of the larger allowable time step, the semi-Lagrangian technique contributes to a significant
enhancement of the efficiency of the semi-implicit integration scheme (Robert et al., 1984). Using a function φ, the
substantive derivative of this function at the point xi can be discretized using a first order scheme as

Dφ

Dt
=
φn+1
i − φnd

∆t
(41)

where, φn+1
i = φ(xi, tn+1) is the image of φ at the point xi and the time step n+ 1 and φnd = φ(xd, tn) is the image of φ

at the point xd and the time step n, obtained by interpolating the solution on the mesh nodes at time step n. The position
xd is obtained using the expression

xd = xi − v∆t (42)

where v = v(xi, tn) is the velocity vector at the point xi and time step n.
Equations (38)-(40), with an implicit time discretization read

Dũn+1 = 0 (43)

M

(
ũn+1 − ũnd

∆t

)
+KM ũ

n+1 −Gp̃n+1 + b = 0 (44)

MΘ

(
Θ̃n+1 − Θ̃n

d

∆t

)
+KΘΘ̃n+1 + c = 0 (45)

At each time step n, Eq. (43) and (44) are solved employing a discrete projection method based on a block LU
approximate factorization, and Eq. (45) is solved separately.
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4. NUMERICAL SIMULATION

In this section we present the results obtained by the numerical simulation, on a simply 3D geometry.
This simulation considers a flow through a channel with a real fluid. The size of channel is 160m x 3m x 30m and

number of nodes is 41 x 2 x 11 nodes with 2400 elements. We consider no-slip condition for the three velocity components
on the bottom of the channel and the y and z components of the velocity is 0 on the side walls and the top of the channel
respectively (slip walls). The inflow velocity is 1m/s in x-direction, while for pressure at the outflow is prescribed as
hydrostatic distribution. This distribution of the pressure at the outflow is necessary for more realistic simulation because
the distribution of the scalar concentration, related with the fluid density by the Eq. (21), produces vertical acceleration
of the fluid. The inflow scalar concentration is Θ = 10 for z < 15m and 0 otherwise. The boundary conditions and the
geometry of the problem are shown in the Fig. 1 below.

xy
z

160
m

30 m

u = 0
v = 0

w = 0

v = 0
w = 0

inflow

u = 1m
s

v = w = 0

outf low

p =
∫ ρdz

Figure 1. Geometry and boundary conditions of the simulation of flow through a channel

We have considered two type of flows, one corresponding to a stable stratification (Fig. 2) and the other an unstable
one (Fig. 3). In both, we specify the critical level of Richardson number Ric = 0.25 and the turbulent length scale
lt = 15m.

Figure 2 shows the velocity field, the scalar concentration and the pressure for stable stratification, while, Fig. 3 shows
the velocity field and the scalar concentration for unstable stratification. For stable stratification we have used β = −0.06
and for unstable stratification β = 0.06.

Figure 2. Flow evolution for stable stratification

The left sides of Fig. 2 and 3 show the flow after a short time of the beginning of the simulation, and the right sides of
Fig. 2 and 3 show the flow patterns that develop at long times. After the initial transient phase, the stably stratified flow
case settles for a steady state solution with low turbulent diffusion. On the other hand, the unstably stratified case shows,
after the initial unsteady phase, the presence of internal gravity waves propagating downstream from the inflow, and a
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very strong mixing across the water column. Notice that the diffusion is due to a combination of the turbulence diffusivity
and the numerical diffusion.

Figure 3. Flow evolution for unstable stratification

5. CLOSING REMARKS

This article describes the initial work to study and forecast the environmental impacts caused by hydro-electrical power
plant reservoir flooding, including simple stratified turbulence models. This inclusion provides a more realistic and useful
tool for engineering purposes. Realistic simulation can be obtained with low computational cost adjusting adequately
a small number of parameters. This type of model is suitable for automatic parameter estimation by adaptive learning,
employing streams of field data.

In this work we have obtained qualitative results using a algebraic equation for the eddy viscosity models for free and
stratified flows. These results are important to future investigations and implementations of more complex models, such
as one equation models (Spalart-Allmaras model) and two equation models. Additionally, the analyzed cases provide a
benchmark for parameter validation based on experimental and field data.
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