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Abstract. This study presents the Eulerian-Lagrangian mettagly and its application to solve a steady flovaitid-

driven triangular two-dimensional cavity. The eu@n of the velocities, stream function, and vatyicinside a
triangular lid-driven cavity, when the Reynolds enchanges of 1 to 6000, is presented. For spaseratization

inside of triangular cavity the orthogonal Cartesia mesh is used. Then, using this mesh, trapelzeddiames appear
in the interface between solid and fluid. For atablie treatment of these volumes the Eulerian-Lagian

methodology is used. The Navier-Stokes equatiansaved numerically using finite-volume method tnedalgebraic
equations system is solved by an iterative metRasults show the development of news eddies vdthaising of
Reynolds number. It is observed also that the imtesf the primary eddy has almost constant strdanction and
vorticity for reasonably large Reynolds number. Somsults for the triangular cavity problem are qmamed with

results in the literature and the agreement is good
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1. INTRODUCTION

The incompressible flow of a fluid in lid-drivemties is a problem of primary importance in comapional fluid
dynamics, the development of improved methods twesthese problems has also been a subject of nortoe
computational physicists for many years. The resfdt the square cavities may not be applied t@rotimportant
geometries such as trapezoidal or triangular evitin irregular cavities special attention hasbgige to boundaries,
i.e., for example, the classic finite-volume methading structured meshes, should be changed ve soé flow in
these geometries. These differences promote thelafmwent of the searches and of new numerical rdstkach time
more fast and accurate for the solution of flowsrirgular geometries. Related to present studyeraphasize the
following works.

There have, a few studies of flow in curved andractangular geometries. Vynnycky and Kimura (19@pported
the results of their study of steady flow in a drivquarter circular cavity. Ribbens et al. (19%3alibed the flow in an
elliptic region with a moving boundary. The flow & trapezoidal cavity was studied by Darr and Va(i@91).
Although curved and nonrectangular geometries nayelpresented using curvilinear and non orthogetrattured
grids, thus triangular cavities can be used tortest numerical methods. Some of the problems erneceohhave been
explained in detail by Ribbens et al. (1994). Tii@ngular cavity also exhibits interesting flow figees that have been
analytically studied by Moffat (1963) in the Stokegime and by Batchelor (1956) to upper Reynoldslver.

Li and Tang (1996) studied the flow in equilatet@ngular cavities, described that the flow feasuis highly
stable as a square cavity, besides verified thepeddence of primary eddy position with the Reysaldmber Re
and has shown that the interior region attains temmsorticity with the increasing of Reynolds nuenbOther model of
triangular cavity was studied by Jyotsna and Vafi&@05), with various eddies inside the cavity. Tdawity had a
height larger than width. The most important featof the flow was the occurrence of an infiniteisatce of eddies of
decreasing size and rapidly decreasing intensitsatds the stationary corner. In semi-circular d¢agsitvhen Reynolds
number increases the primary eddy changes thegositdirection to top of lid-driven cavity as ¥éed by Glowinski
et al. (2006).

The main goal of this article is to investigate ttapability of Eulerian-Lagrangian method to sdhve steady flow
in a triangular cavity that has inclined boundari&ke paper is organized as follows. Section 2oihices the
formulation of the problem and shows the spacerélization of governing equations. Numerical resalte presented
in Section 3, including a comparison with some nticaé results presented in Li and Tang (1996) araMainet al.
(1994). Streamlines and contours of vorticity arespnted to Re€ 6000 in the same section.

2. PROBLEM FORMULATION
Figure 1 shows the geometry of the triangular gaviiith the coordinate system used here. In the flegion, is

solved the Navier-Stokes equations governing a dimeensional, steady, incompressible flow of consténid
properties. These equations are written in priraitrariablesy, v, andp) as (Fox e McDonald, 2001),

67U+@:0’ (1)
ox oy
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whereu (m/s) andv (m/s) are the velocity components in thandy directions, respectively (m?/s) ep (kg/nt) are
the dynamics viscosity and density, respectiveig @(Pa) is the a pressure.
The boundary conditions for triangular cavityFig. 1, are given as follows:

() u=1v=0fory=Hand &xx<L;
(i) u=0,v=0fory="f(x)=-y3x+3 and0 x <L/2.
(i) u=0,v=0fory="f(x) = +/3x-3 and L/2 <x< L.

v

(%)
y f(x)

L.,

Figure 1. Triangular cavity.

The lid-driven cavity depicted in Fig. 1 has thendinsions L :2\/5 m and H = 3m, generating an equilateral

cavity with length of each sidE\/g m.
As a common practice Eqgs. (1) to (3) can be expreby a single equation for the generic variaiies

) , I(vg) _ rwz[@j N rwz[@] s
& ¥ x &) A (4)
where @ is equal tou andv for Egs. (2) and (3), respectively, and equal nityufor Eq. (1), and r* ands? are,
respectively, the diffusion coefficient and ternusme. The governing equation, Eq. (4), will be désized first in the

full cells and following the discretization is pezged for trapezoidal cells in the boundaries.
2.1. Discretization for full volumes

The Eq. (4) with their respective boundary comadit is solved in this work using the finite-volumeethod
described by Patankar (1980). The cavity is divided small no overlapping rectangular control wvoks. The co-
localized arrangement is utilized, i.e., in theteerf each control volume is located a nodal pwihére are stored all
interesting variables. Integrating the Eq. (4) cagypical control volume in the fluid domain, suahthe one presented
in Fig. 2, yields,

ne a en a ne 62 en 62 .
'[;[4%) xdy+u7('§;¢)dydx:[vjv/"”a—gdxdy+vjv.[/"”a—ﬁdydx+ s’ 5)

where subscripts, w, n ands denote the faces east, west, north, and soutieafdntrol volume, respectively, as shown

in Fig. 2, ands” is the average value of term source.
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Figure 2. Typical control volume.

The Eq. (5) can be rewritten as,

<mw1)e—(w¢dl)w+<pv¢nl)n—(pvanl)s=§“’+rg’ﬂ’j dle—rv‘c’ﬂ’j dlmn“’"—q’j dln—r!"’—‘”] dl,. ©)
ax ), ax ), ay ), oy )

Substituting convective and total fluxes represgrigF = (oudl) andJ = [pug/0¢an)]dl, respectively, in Eq.
(6) and subtracting from the resulting equation egeation of mass conservation multiplied gayresults, after some
adjustments, in

(‘]e_Fe%)_(JW_FW%)-'-(‘]n_Fn%)_(‘]S_FS%)zgw' (7)

Thus, the algebraic equation for the control volitr@n be expressed as

Al = Al +ayRy t AR +Has + S

ac =D APR,[+(-F,0)

ay =D,AP,|+(F, 0)

ay =D, AR |+(-F,0) ®)
as =D APR[+(F.0):

a, =ag ta, ta, tag

§¢ _ pedle + pwd|w7 if @=u,
B _pnd|n+ psdls’ if g=v,

in which (a, by is a function that stands for the larger of thargify a or b, A|P| = (0, (1-0,1|P|)®) is the Power-Law
scheme employed to obtain spatial derivatives (kata 1980), an® = F/D is the cell Peclet number.

2.2. Discretization for trapezoidal volumes

This work uses marker particles to identify theeisection of the interfacial functiof(x), which defines the solid
boundary, with the Cartesian fixed grid. Marker wdes have been used for more than four decadeskifRel977),
and are attractive due to their ability to modéeifaces with complex topologies. A detailed préston of Eulerian-
Lagrangian method used in this study can be foorddaykumalet al. (1996), Shyyet al. (1996), Udaykumar (1997),
Ye et al. (1999) and Mariani and Prata (2008). The trapedoidlumes in the interface between solid and finidhe
triangular cavity showed in Fig. 1, are used indrgeretization of the governing equations, suchimes are presented
in Fig. 3.

The integration of Eq. (4) over an interfacial gohtvolume, such as presented in Fig. 3a, yields

nwe

nnwe a(,a.l¢) en,nwa(p‘lw) n 02¢ ennw 02(0 —p
B2 axdy+ [ [ L2%%Gydx= [ [re<Laxdy+ [ [ re<Laydx+s’-
[t ot TS0 o
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Figure 3. Trapezoidal volumes (a) first, (b) secdieli third, (d) fourth,
(e) fifth, and (f) sixth types.

After of integration of the Eq. (9) yields, for erple, for the volume 1 showed in Fig. 3a, the fwailog expression,

(PuP)dl, = (@), dly + (V@) dly + (V@) iy, — (@) dls = S +

10
o122 a-rr22) a +re2) a, 222 a,-re2)a, (10)
0X o on ), ay oy oy )

n nw

where s? =-p.di, + p,di;n, for @=u, or s”=-p_dl, - p,,dl,, + psdisn, for @=v. Replacing the convective fluxes and

then subtracting from the resulting equation treciditized continuity equation multiplied lg yields the following
equation:

Fo@ = %) ~F (@ - %)+ Fo(@h ~ B) + Foy(@hu ~ B) - Fo(@ - @) =S +

11
o128 0,122 o, +1¢%) a, 0228 a,-re2®]a, (D
ax J, an ), ay oy s

n nw

The convective fluxes in interface, = u, n, for theu velocity, andu, = u, ﬁy for v velocity, wheref, and ﬁy are

the components of unitary vector normal to integfdn this study are nulls. Making use of totakfthe Eq. (11) can be
written as

= 0
(Je - Fe%) + (Jn - Fn%) = S¢ _(an - an¢P)+ (JS - FS¢P)_ rI¢FZJI dII 7' (12)

or,

agh = acg +ayg, +b’
ac =D A(RN+(-F.0) (13)
ay =D,A(P, )+(-F,0):
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a, =ag +ay:
B =5 = (3, ~Fu) (0, -Fi) 1792
I
The flux of gin the solid-fluid interface can be decomposedgsn), = (3g/ax), A, + (0 /ay), fiy requiring computation
of agay), (see Fig. 5) andgox), (see Fig. 4b) at the center of the interfacia B@gment. For the cell in question (Fig.
3a), ag/ax), is computed expressing thevariation along the vertical line in terms of adtion that is quadratic ix, for

more details see the points used in Fig. 4b. Thiabies, ¢, ag/ay),,. @, dg/ay), are computed using a function that is

quadratic irx and linear iry, in conformity with Yeet al. (1999), Mariani (2002) and Mariani and Prata (2088e the
Fig. 4a for more detalils.
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Figure 4. Points used in computation offia)e (b) (9¢/0x), -
The flux at the northwest facew, of control volume depicted in Fig. 3a, is appmated expressing as,

— 2 2
G = Q1 XwYnw + CoXnw + CaXnw Ynw + C4Xnw + C5Ynw + Co»

14
(099/0y),yy = C1Xy + CaXoy + Cs (14)

where each of the unknown coefficientsto cg, are expressed in terms of the valuegat the six grid points shown
in Fig. 4a and described as

Aa1=CY ,1XI2,1 + CZXIZ,:I. +TC3Y) X 1 CyX 1 +CY ;1 +Cs

% = C1YpXp +CoXp +C3YpXp + CaXp +CsYp +Co

% = ClYeXE + CoXE +CaVeXe +CyXe +CsYe +Cq . (15)
W = CLYNXR *CoXG +CaYn XN +CaXy +CsY +Co

Raw = CYawXw + CoXRw + C3YnwXnw + CaXpw +CsYnw +Co

_ 2 2
A2 =CY1 2X 2 TCX 2 ¥ C3Y) 2X) 2 7 C4X| 2 +CsY) o +Cq

The equation system shown in Eq. (15) is solvedufn of a direct method with partial pivoting. Amdlar
interpolation is also used to determigé south face of control volume depicted in Fig. 3he fluxed,, andf, doesn’t
need of special treatment because its faces wenet@tcepted by interfacial function. In generdiere are also
interfacial volumes which have a east and west-€atecell. To evaluate the face flux of those vohasnthe
interpolation function employed is linear xnand quadratic ity. For the coupling between pressure and velodity, t
SIMPLEC Semi Implicit Method for Pressure Linked Equati®@snsistent algorithm was employed. Discretized
equations are solved iteratively using the linelibg-method presented by Patankar (1980). Undexagion factors
were employed to obtain stable convergence fosthation of mass and movement equations.

Similar to Eqg. (13) can be obtained

ap@h = agf +aydy +andh +as@s +b? (16)

for the control volumes described in Fig. 3. Theftioients, ap, ag, aw, ay, as andb? are organized in Tabs. 1 to 3,
including the first volume, which discretizatiomeddy was described in this section.
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Table 1. Coefficients for Eq. (16).

Volume a, ag a, ay ag
FIrSt aE + aN DeA(l Pe |) + <_ Fe ’O> 0 Dn A(l Pn |) + <_ Fn ‘0> 0
Second ag D.A(P, )+(-F. 0 0 0 0
Third ap +a, +ag D.A(IP.|)+(-F..0) 0 D,A(P, ) +(-F,0) D.A(|P, ) +(F..0)
Fourth a, tay 0 D,A(P,)+(F,00  D,A(R,)+(-F,0) 0
Fifth ay 0 D,A(P, ) +(F,0) 0 0
Sixth ay +tay +ag 0 D, AP, )+(F,.0) D,A(PR, N+(-F,0)  D,A(P.|)+(F,0)

Table 2. Source term, total and convective fluxesduin Tab. 1.
Volume b? J =
FiI’St §(a_(‘an_anwf:’)"'(‘]s_Fsﬂi’)_rl({]a7¢j dlI F.a, _rg%] dIn Wdl)n
on | ay n
_ 3 dl
Second s”- F.“’a*fj dly = (3 = Fogh) + (35 = Fogh), Frehe —rrﬁ‘;g—;" die ol
! ne
Third éw—(JnW—an(pP)+(JSW—F5W¢1>)—F,“’%) di, an%w-rgwg—;" dly )
! nw
= 0 dl
Fourth Sw_(Jne_FneﬂD)+(Js_Fs%)+rlw£j dl, _Fs¢s+rg%§)j dlg - )s
| s
F|ﬁh §¢+rlw%oj dII _(Jn _Fn%)"'(‘]s _Fs%)v _Fsewse+rg;%§,J dlse p\/dl)se
| se
_ 9 dl
SlXth Sw _(‘Jne - Fne%) + (Jse_ Fseﬂﬁ) - rl¢£j dII - st@sw"' rs(pw% dIsw m )SW
| SW
Table 3. Variableg and (ag/ay).
Faces ¢ (0g/0y)
n CanZYn +C2Xr% +%Xnyn +C4Xn +05yn +C6 Cﬂ.Xr21 + %Xn +CS
ne CiX5eYne * C2Xhe + C3XneYne * Ca¥ne + CsYne * Co CXe + C¥ne + Cs
nw C.I.anwynw + C2Xn2w + C3anynw + C4XHW + CS Yow + CG Clxrzwv + Q’»an + CS
S C.I.XSZyS + C2X§ +C3Xsys + C4Xs +05ys + CG C.I.st + C3XS + CS
se C.Lxszeyse + C2 X§e + C3X5eyse + C4xse + C5 Yse + CG Clxsze + C3Xse + Cs
S C.lxszwysw + C2 ng + C3XSWySW + C4Xsw + C5ySW + CG C.lxszw + C’sxsw + C5

3. NUMERICAL RESULTS

In this section is presented flow patterns andaxdtaristic parameters for a triangular cavity vdifierent Reynolds
numbers. Numerical tests for a variety of trianggaometries have been investigated, but for byewily give here
the description for the equilateral cavity. Usingshes 3860, 60x120, 12240, and 248480, we obtain numerical
results for a Reynolds number up to 1. The comparisetween the coarse and fine grids in terms ofiracy of
numerical results and computational time show éhi@bility using a coarse grid, formed by X230 control volumes.
Detailed characteristics parameters are given im Zalt can be seen from Tab. 4 that our resuisragood agreement
with those obtained by Li e Tang (1996) and McQuetiral. (1994). In that table, the stream functitascribe the
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vector field (1, v) by a simple scalar quantity/ The relation between velocity and stream funct®based in mass
conservation equation and can be expressed as,

yolow 17)
p oy
yo-1 (18)
p ox

The vorticity is twice the angular velocity of @i any point, or is the measure of fluid rotatia@tardant it moves
in flow field, is described as,

T (19)
T ox ay

To verify the accuracy of the results presentedab. 4 was computed the absolute errgy,-|g|, where the
subscriptp denotes the present work and the subsorig¢notes the works of other authors. Comparingvitees of
the stream function, the biggest error was obtaiimele = 200, with the value of 3.3% confronted to Li ahdng
(1996) and the smallest error was obtaineRae 1 with the value of 0.4% compared to McQueiral. (1994). For the
vorticity the biggest error was obtained Re = 200 with the value of 2.69% compared to Li anchd 41996) and
smallest error was obtainedRa= 1 with the value of 0.5% confronting to Li andrig (1996). The order of the errors
obtained shown that the method employed in theeptesork is acceptable to solve the flow in tharigular cavity
with reasonable accuracy.

The streamlines and contours of the vorticity apicted in Fig. 6 shown the standard of flow whk tncreasing of
Reynolds number since 1,000 to 6,000. The topmddy eleviates from this sequence with increase ignBlels
number, since inertial effects near the top watldmee more important &eincreases. All figures show similar eddies
of decreasing size towards the lower corner ofcéngty. For all Reynolds numbers, the lower eddy tieeir centers
along the centerline of the cavity. The topmostyedehere inertial effects are dominant, first moteshe right aRke
increases and later moves back towards the cehtbe @avity, while the second eddy moves to tliedad increases
with the Reynolds number. Plots of the contoursarfstant vorticity are shown in Fig. 6 fee= 1,000 to 6,000. It is
seen that for smaRRe the vorticity field is symmetrical about the cerine. However, afke increases, the vorticity
variation moves to the boundary regions of the tgawihile the interior or the topmost eddy tendsattain constant
vorticity.

Table 4. Properties of the center of the primamyyetbcated atx, y) with stream function valug/and vorticity (.

Re Source 7 4 X y
Present work 0.229 1.373 1.732 2.475
1 Li and Tang (1996) 0.235 1.368 1.767 2.460
McQuainet al. (1994) 0.233 1.363 1.749 2.460
Present work 0.236 1.481 2.107 2.438
200 Liand Tang (1996) 0.269 1.212 1.940 2.280
McQuainet al. (1994) 0.260 1.272 1.940 2.280
Present work 0.247 1.321 2.021 2.325
500 Liand Tang (1996) 0.279 1.066 1.871 2.160
McQuainet al. (1994) 0.269 1.250 1.905 2.265
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Figure 6. Streamlines and contours of the vortjagpectively, foRe= 1,000; 2,000; 3,000; 4,000; 5,000 and 6,000.

4. CONCLUSIONS

In this paper was presented the results of a steatpus flow simulation in a triangular cavity. Withe use of
Cartesian grids and an Eulerian-Lagrangian methwal solution was obtained without encountering diffjculties.
The present approach proved to be quite succeasflilyielded accurate solutions for high Reynoldmimers. The
numerical results obtained in this study were camgavith results reported in literature and theeagnent is good.
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