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Abstract. This study presents the Eulerian-Lagrangian methodology and its application to solve a steady flow in a lid-
driven triangular two-dimensional cavity. The evolution of the velocities, stream function, and vorticity inside a 
triangular lid-driven cavity, when the Reynolds number changes of 1 to 6000, is presented. For space discretization 
inside of triangular cavity the orthogonal Cartesian’s mesh is used. Then, using this mesh, trapezoidal volumes appear 
in the interface between solid and fluid. For a suitable treatment of these volumes the Eulerian-Lagrangian 
methodology is used. The Navier-Stokes equations are solved numerically using finite-volume method and the algebraic 
equations system is solved by an iterative method. Results show the development of news eddies with increasing of 
Reynolds number. It is observed also that the interior of the primary eddy has almost constant stream function and 
vorticity for reasonably large Reynolds number. Some results for the triangular cavity problem are compared with 
results in the literature and the agreement is good. 
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1. INTRODUCTION 
 
 The incompressible flow of a fluid in lid-driven cavities is a problem of primary importance in computational fluid 
dynamics, the development of improved methods to solve these problems has also been a subject of concern to 
computational physicists for many years. The results for the square cavities may not be applied to other important 
geometries such as trapezoidal or triangular cavities. In irregular cavities special attention has been give to boundaries, 
i.e., for example, the classic finite-volume method, using structured meshes, should be changed to solve the flow in 
these geometries. These differences promote the development of the searches and of new numerical methods each time 
more fast and accurate for the solution of flows in irregular geometries. Related to present study can emphasize the 
following works. 
 There have, a few studies of flow in curved and nonrectangular geometries. Vynnycky and Kimura (1994) reported 
the results of their study of steady flow in a driven quarter circular cavity. Ribbens et al. (1991) described the flow in an 
elliptic region with a moving boundary. The flow in a trapezoidal cavity was studied by Darr and Vanka (1991). 
Although curved and nonrectangular geometries may be represented using curvilinear and non orthogonal structured 
grids, thus triangular cavities can be used to test new numerical methods. Some of the problems encountered have been 
explained in detail by Ribbens et al. (1994). The triangular cavity also exhibits interesting flow features that have been 
analytically studied by Moffat (1963) in the Stokes regime and by Batchelor (1956) to upper Reynolds number. 
 Li and Tang (1996) studied the flow in equilateral triangular cavities, described that the flow features is highly 
stable as a square cavity, besides verified the independence of primary eddy position with the Reynolds number (Re) 
and has shown that the interior region attains constant vorticity with the increasing of Reynolds number. Other model of 
triangular cavity was studied by Jyotsna and Vanka (1995), with various eddies inside the cavity. The cavity had a 
height larger than width. The most important feature of the flow was the occurrence of an infinite sequence of eddies of 
decreasing size and rapidly decreasing intensity towards the stationary corner. In semi-circular cavities when Reynolds 
number increases the primary eddy changes the position in direction to top of lid-driven cavity as verified by Glowinski 
et al. (2006). 
 The main goal of this article is to investigate the capability of Eulerian-Lagrangian method to solve the steady flow 
in a triangular cavity that has inclined boundaries. The paper is organized as follows. Section 2 introduces the 
formulation of the problem and shows the space discretization of governing equations. Numerical results are presented 
in Section 3, including a comparison with some numerical results presented in Li and Tang (1996) and McQuain et al. 
(1994). Streamlines and contours of vorticity are presented to Re ≤ 6000 in the same section. 
 
2. PROBLEM FORMULATION 

 
Figure 1 shows the geometry of the triangular cavity, with the coordinate system used here. In the flow region, is 

solved the Navier-Stokes equations governing a two-dimensional, steady, incompressible flow of constant fluid 
properties. These equations are written in primitive variables (u, v, and p) as (Fox e McDonald, 2001),  
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where u (m/s) and v (m/s) are the velocity components in the x and y directions, respectively, ν (m2/s) e ρ (kg/m3) are 
the dynamics viscosity and density, respectively, and p (Pa) is the a pressure. 
 The boundary conditions for triangular cavity, in Fig. 1, are given as follows: 

(i) u = 1, v = 0 for y = H and 0 ≤ x ≤ L; 
(ii)  u = 0, v = 0 for y = f(x) = 33 +− x  and 0 ≤ x ≤ L/2. 

(iii)  u = 0, v = 0 for y = f(x) = 33 −x  and L/2 < x ≤ L. 
 

 
 

Figure 1. Triangular cavity. 
 

The lid-driven cavity depicted in Fig. 1 has the dimensions L = 32  m and H = 3 m, generating an equilateral 

cavity with length of each side 32  m.  
As a common practice Eqs. (1) to (3) can be expressed by a single equation for the generic variable φ as 
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where φ is equal to u and v for Eqs. (2) and (3), respectively, and equal to unity for Eq. (1), and φφ S and  Γ  are, 
respectively, the diffusion coefficient and term source. The governing equation, Eq. (4), will be discretized first in the 
full cells and following the discretization is presented for trapezoidal cells in the boundaries.  
 
2.1. Discretization for full volumes 
 
 The Eq. (4) with their respective boundary conditions is solved in this work using the finite-volume method 
described by Patankar (1980). The cavity is divided into small no overlapping rectangular control volumes. The co-
localized arrangement is utilized, i.e., in the center of each control volume is located a nodal point where are stored all 
interesting variables. Integrating the Eq. (4) over a typical control volume in the fluid domain, such as the one presented 
in  Fig. 2, yields, 
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where subscripts e, w, n and s denote the faces east, west, north, and south of the control volume, respectively, as shown 

in Fig. 2, and 
φ

S  is the average value of term source. 
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Figure 2. Typical control volume. 
 
The Eq. (5) can be rewritten as, 
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Substituting convective and total fluxes represented by F = (ρudl) and J = [ρuφ-Γφ(∂φ/∂n)]dl, respectively, in  Eq. 

(6) and subtracting from the resulting equation the equation of mass conservation multiplied by φP results, after some 
adjustments, in  
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Thus, the algebraic equation for the control volume P can be expressed as 

 
φφφφφφ Saaaaa SSNNWWEEPP ++++= , 

0,FPADa eeeE −+= ,  

0,FPADa wwwW += ,  

0,FPADa nnnN −+= , 

0,FPADa sssS += ,  

SNWEP aaaaa +++= , 





=+−
=+−

=
v,dlpdl

u,dlpdlp
S

ssn

wwee

φ
φφ

  if          ,p 

  if          ,
 

n

 

(8) 

 
in which 〈a, b〉 is a function that stands for the larger of the quantify a or b, A|P| = 〈0, (1-0,1|P|)5〉 is the Power-Law 
scheme employed to obtain spatial derivatives (Patankar, 1980), and P = F/D is the cell Peclet number.  
 
2.2. Discretization for trapezoidal volumes 
 

This work uses marker particles to identify the intersection of the interfacial function, f(x), which defines the solid 
boundary, with the Cartesian fixed grid. Marker particles have been used for more than four decades (Peskin, 1977), 
and are attractive due to their ability to model interfaces with complex topologies. A detailed presentation of Eulerian-
Lagrangian method used in this study can be found in Udaykumar et al. (1996), Shyy et al. (1996), Udaykumar (1997), 
Ye et al. (1999) and Mariani and Prata (2008). The trapezoidal volumes in the interface between solid and fluid in the 
triangular cavity showed in Fig. 1, are used in the discretization of the governing equations, such volumes are presented 
in Fig. 3. 

The integration of Eq. (4) over an interfacial control volume, such as presented in Fig. 3a, yields 
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Figure 3. Trapezoidal volumes (a) first, (b) second, (c) third, (d) fourth,  
(e) fifth, and (f) sixth types. 

 
After of integration of the Eq. (9) yields, for example, for the volume 1 showed in Fig. 3a, the following expression, 
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where xIIee ndlpdlpS +−=
φ  for φ = u, or yssnwnwnn ndlpdlpdlpS +−−=

φ  for φ = v. Replacing the convective fluxes and 

then subtracting from the resulting equation the discretized continuity equation multiplied by φP yields the following 
equation: 
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The convective fluxes in interface, unI = uI xn̂  for the u velocity, and unI = uI yn̂  for v velocity, where xn̂  and 

yn̂  are 

the components of unitary vector normal to interface, in this study are nulls. Making use of total flux the Eq. (11) can be 
written as 
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The flux of φ in the solid-fluid interface can be decomposed as ( ) ( ) ( ) yIxII nynxn ˆˆ ∂∂+∂∂=∂∂ φφφ , requiring computation 

of )Iy∂∂φ  (see Fig. 5) and )Ix∂∂φ  (see Fig. 4b) at the center of the interfacial line segment. For the cell in question (Fig. 

3a), )Ix∂∂φ  is computed expressing the φ variation along the vertical line in terms of a function that is quadratic in x, for 

more details see the points used in Fig. 4b. The variables, )nwnw y∂∂φφ  , , )ss y∂∂φφ  ,  are computed using a function that is 

quadratic in x and linear in y, in conformity with Ye et al. (1999), Mariani (2002) and Mariani and Prata (2008), see the  
Fig. 4a for more details. 

 

 
(a) 

 
(b) 

 
Figure 4. Points used in computation of (a) fnw e (b) ( )Ix∂∂φ . 

 
The flux at the northwest face, nw, of control volume depicted in Fig. 3a, is approximated expressing φ  as, 
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where each of the unknown coefficients, c1 to c6, are expressed in terms of the values of φ at the six grid points shown 
in Fig. 4a and described as 
 

















+++++=

+++++=

+++++=

+++++=

+++++=

+++++=

62,52,42,2,3
2

2,2
2

2,2,12,

6543
2

2
2

1

6543
2

2
2

1

6543
2

2
2

1

6543
2

2
2

1

61,51,41,1,3
2

1,2
2

1,1,11,

cycxcxycxcxyc

cycxcxycxcxyc

cycxcxycxcxyc

cycxcxycxcxyc

cycxcxycxcxyc

cycxcxycxcxyc

IIIIIIII

NWNWNWNWNWNWNWNW

NNNNNNNN

EEEEEEEE

PPPPPPPP

IIIIIIII

φ

φ

φ

φ

φ

φ

. 
(15) 

 
The equation system shown in Eq. (15) is solved through of a direct method with partial pivoting. A similar 

interpolation is also used to determine fs in south face of control volume depicted in Fig. 3a. The fluxes fn and fe doesn’t 
need of special treatment because its faces weren’t intercepted by interfacial function. In general, there are also 
interfacial volumes which have a east and west face-cut cell. To evaluate the face flux of those volumes, the 
interpolation function employed is linear in x and quadratic in y. For the coupling between pressure and velocity, the 
SIMPLEC (Semi Implicit Method for Pressure Linked Equations Consistent) algorithm was employed. Discretized 
equations are solved iteratively using the line-by-line method presented by Patankar (1980). Under-relaxation factors 
were employed to obtain stable convergence for the solution of mass and movement equations.  

Similar to Eq. (13) can be obtained 
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for the control volumes described in Fig. 3. The coefficients, aP, aE, aW, aN, aS and bφ are organized in Tabs. 1 to 3, 
including the first volume, which discretization already was described in this section.  
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Figure 5. Points to compute ( )Iy∂∂φ . 

 
Table 1. Coefficients for Eq. (16). 
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Table 2. Source term, total and convective fluxes used in Tab. 1. 
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Table 3. Variable φ  and ( )y∂∂φ . 
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3. NUMERICAL RESULTS 
 

In this section is presented flow patterns and characteristic parameters for a triangular cavity with different Reynolds 
numbers. Numerical tests for a variety of triangular geometries have been investigated, but for brevity, only give here 
the description for the equilateral cavity. Using meshes 30×60, 60×120, 120×240, and 240×480, we obtain numerical 
results for a Reynolds number up to 1. The comparison between the coarse and fine grids in terms of accuracy of 
numerical results and computational time show the reliability using a coarse grid, formed by 120×240 control volumes. 
Detailed characteristics parameters are given in Tab. 4. It can be seen from Tab. 4 that our results are in good agreement 
with those obtained by Li e Tang (1996) and McQuain et al. (1994). In that table, the stream function describe the 
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vector field (u, v) by a simple scalar quantity, ψ. The relation between velocity and stream function is based in mass 
conservation equation and can be expressed as, 
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The vorticity is twice the angular velocity of air in any point, or is the measure of fluid rotation accordant it moves 

in flow field, is described as, 
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To verify the accuracy of the results presented in Tab. 4 was computed the absolute error, |φp - φo|, where the 

subscript p denotes the present work and the subscript o denotes the works of other authors. Comparing the values of 
the stream function, the biggest error was obtained to Re = 200, with the value of 3.3% confronted to Li and Tang 
(1996) and the smallest error was obtained to Re = 1 with the value of 0.4% compared to McQuain et al. (1994). For the 
vorticity the biggest error was obtained to Re = 200 with the value of 2.69% compared to Li and Tang (1996) and 
smallest error was obtained to Re = 1 with the value of 0.5% confronting to Li and Tang (1996). The order of the errors 
obtained shown that the method employed in the present work is acceptable to solve the flow in the triangular cavity 
with reasonable accuracy. 

The streamlines and contours of the vorticity are depicted in Fig. 6 shown the standard of flow with the increasing of 
Reynolds number since 1,000 to 6,000. The topmost eddy deviates from this sequence with increase in Reynolds 
number, since inertial effects near the top wall become more important as Re increases. All figures show similar eddies 
of decreasing size towards the lower corner of the cavity. For all Reynolds numbers, the lower eddy has their centers 
along the centerline of the cavity. The topmost eddy, where inertial effects are dominant, first moves to the right as Re 
increases and later moves back towards the center of the cavity, while the second eddy moves to the left and increases 
with the Reynolds number. Plots of the contours of constant vorticity are shown in Fig. 6 for Re = 1,000 to 6,000. It is 
seen that for small Re, the vorticity field is symmetrical about the centerline. However, as Re increases, the vorticity 
variation moves to the boundary regions of the cavity, while the interior or the topmost eddy tends to attain constant 
vorticity.  

 
Table 4. Properties of the center of the primary eddy, located at (x, y) with stream function value ψ and vorticity ζ. 

Re Source ψ ζ x y 
Present work 0.229 1.373 1.732 2.475 
Li and Tang (1996) 0.235 1.368 1.767 2.460 1 
McQuain et al. (1994) 0.233 1.363 1.749 2.460 
Present work 0.236 1.481 2.107 2.438 
Li and Tang (1996) 0.269 1.212 1.940 2.280 200 
McQuain et al. (1994) 0.260 1.272 1.940 2.280 
Present work 0.247 1.321 2.021 2.325 
Li and Tang (1996) 0.279 1.066 1.871 2.160 500 
McQuain et al. (1994) 0.269 1.250 1.905 2.265 
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Figure 6. Streamlines and contours of the vorticity, respectively, for Re = 1,000; 2,000; 3,000; 4,000; 5,000 and 6,000. 
 
4. CONCLUSIONS 
 
In this paper was presented the results of a steady viscous flow simulation in a triangular cavity. With the use of 
Cartesian grids and an Eulerian-Lagrangian method, the solution was obtained without encountering any difficulties. 
The present approach proved to be quite successful and yielded accurate solutions for high Reynolds numbers. The 
numerical results obtained in this study were compared with results reported in literature and the agreement is good. 
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