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Abstract. The purpose of these instructions is to serve as a guide for formatting papers to be published in the 
Proceedings Based on the kinematic strong-weak criterion proposed by Tanner and Huilgol (1975), Tanner (1976) 
has developed a strong-weak criterion for a flowing system where hookean dumbbell micro-elements are present 
on a Newtonian solvent. Olbrich et. Al (1982) have extended this idea to more complex micro-structured liquids 
based not only on the kinematics of the main flow but also on micro-structure features of the micro-element and its 
interaction with the main flow. They could encompass, with the same theory, emulsions and polymeric liquids. The 
vector chosen to represent the main features of the micro-element can be a single one, as in the case of drops in a 
fluid, or can be an expectation value of a set of vectors, as in the case of polymer chains. The basic idea of these 
approaches is the identification of micro-structure-velocity-gradient, the velocity gradient experienced by the 
micro-element considered. After that, a Lyapunov exponent stability analysis is conducted. The problem identified 
with the application of this method is that the eigendirection correspondent to a positive real part of a Lyapunov 
exponent can be orthogonal to the orientation of the micro-element considered. Therefore, the eigendirections of 
the Lyapunov exponent analysis have to be filtered appropriately to exclude the plane defined by the orientation of 
the micro-element. Situations where the two methods do not coincide are explored to show that the filtered 
criterion over-performs the original one. 
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1. INTRODUCTION  
 

Solving a set of partial differential equations and appropriate boundary and initial conditions correspondent to a 
physical problem of interest in Mechanics is to find scalar, vector or tensor fields which obey that given set. These 
fields are generally filtered to interpret the results. In Fluid Mechanics, for example, it is common to calculate the 
streamlines (with a velocity field) and discover different flow patterns depending on specific parameters. It is also 
helping to plot tensor components or the deformation rate field. In general industrial processes, the analysis of a 
well-chosen diversity of fields increases the knowledge on the engineering problem and allows technical and 
economical decisions in order to optimize results: increase quality of the final product and decrease time and energy 
consumption. A change in a fluid mechanic part of an industrial process willing to increase its efficiency involve 
modifying combinations of four restrictions of the process: geometry, flow rate, materials which are involved and 
external forces. On manufacturing new devices to execute a certain process, generally, there is a stage of testing, 
that can be conducted numerically and/or experimentally, during which the efficiency of this device is measured. 
Not only experimentally, but numerically, is more expensive to change geometry and this is a challenge for the 
construction of new devices. Industrial processes such as: manufacturing anisotropic materials, oil recovery by 
polymer solutions in porous media, coating, separation of suspended and continuous phases, mixing, emulsification, 
preparation of medicines, food transportation, and many others, are connected to materials which are sensitive to 
flow type, i.e. respond differently when submitted to shear-like or extension-like flows (or any other-like flow). For 
these kind of non-Newtonian materials, an interesting quantity that can be calculated in order to give a better 
comprehension to what they are experiencing during a certain process, is a field of a persistence-of-straining 
parameter. This parameter is a flow classification dimensionless index which, in essence, gives a local instantaneous 
measure of how close a flow is from an extensional flow. In this approach, one can show that, for example, 
viscometric flows have a constant ``distance" from extensional ones or rigid body motions are in an opposite 
extreme. Hence, these results motivate the use of this parameter to classify motions. Astarita (1979) was probably 
the first one to propose a local objective criterion not restricted to Motions With Constant Relative Principal Stretch 
History (MWCRPSH) to capture the persistence-of-straining concept. The criterion proposed by Astarita (1979), 
however, was not valid for any 3-D kinematics. Thompson and Souza Mendes (2005a, 2007) developed a purely 
kinematic criterion based on the persistence-of-straining tensor and extended Astarita's previous work to general 
flows. As pointed by Thompson and Souza Mendes (2007), by purely kinematic it was meant that, for any given 



velocity field, that criterion yields local values for persistence of straining and, therefore, is not intended to analyze 
admissibility or classes of materials that can undergo a specific motion. 

There are very representative industrial processes are related to complex microstructured fluids. In a 
mesoscopic approach, information about microstructure such as size and orientation, and its evolution counterparts 
stretch and rotation, are commonly brought into models by the introduction of a new local state variable: the 
conformation tensor. The conformation tensor can be represented by tensors of different, but the present framework 
is applied to second order tensors only. Depending on the physical context, the conformation tensor can be a 
representation of the expectation of local average value of microstructure features (being the case of polymeric 
liquids), or can be a single microstructure element (a drop suspended in a liquid, for example). 

Hence, in this case, the constitutive model is broken into two parts. One part relates microstructure with 
kinematics of continuous phase. Generally this is done by an evolution equation for the conformation tensor. A 
general framework for an evolution equation for a symmetric second order conformation tensor can be found in 
Pasquali and Scriven (2004), for polymeric liquids and in Tucker and Moldenaers (2002) for a single ellipsoid 
droplet. The second part is dedicated to the relation between conformation tensor and stress. Since microstructured 
fluids are widely used in industry and conformation second order tensors are common entities to represent 
microstructure, a persistence-of-conformation-stretching parameter can be an interesting field in the analysis of 
certain processes.  

 
When oil is being produced from a reservoir, it does not come alone. Generally it comes with water and gases. 

During the firs stage of separation, gas can be produced with high quality (very few parts of other components), but 
oil is still “contaminated” with water and water is still “contaminated” with oil. The problem of the first 
contamination is that above a certain level, the excess of water (more than 1 %volume fraction) inhibits some 
processes that are required for refinement and the production of derivatives such as gasoline or diesel. The second 
contamination problem concern environmental laws that do not allow a certain level of oil when water is rejected. A 
second stage of separation can be done by several methods, but one which is being more frequent is the use of 
hydro-cyclones. This method succeeds when there is the so-called deoilering hydro-cyclone, when the continuous 
phase is water. However, when the continuous phase is oil, for a reason which still being investigated, the process of 
separation by a hydro-cyclone does not give good results. One of the possible reasons for this failure can be 
associated to the breakage of the water drops inside the oil, due to action of the flow, making more difficult the 
process of migration inside the hydro-cyclone. 

 
One of the aims of the present work is to study criteria that can be applied to micro-structured fluids that can be 

used to represent the break-up of these drops. These criteria are generally thought as measures of the kind of flow 
which is imposed to the drop, or a general micro-element. 

 
2. MATERIAL RESPONSE AND FLOW CLASSIFICATION 
 
Astarita (1979) proposed some conditions that a representative criterion should meet in order to classify flows. The 
criterion should be 
A) Local. It should indicate the flow type at each position in a flow. 
 
B) Objective. It should be invariant under changes of reference frame. 
 
C) Generally applicable. It should not be restricted to certain classes of flows. 
 
He also pointed out that a criterion could enjoy one of the following conditions 

 
D) Purely kinematic. 
 
E) Dependent on material properties and kinematics. 
 
Thus, according to Astarita (1979) a criterion should be of type ABCD or ABCE. Thompson and Souza Mendes 
[1,2,3] developed an ABCD criterion and made a review on the subject.  
 
Probably the first work on a flow classification scheme based on material response was done by Tanner (1976). He 
considered a collection of suspended elastic dumbbell particles (two beads connected by a linear, infinite extensible, 
spring) following the flow and discriminated flow conditions as strong or weak, depending on the ability of this 
given flow to distort microstructure. In the case considered, microstructure distortion was captured by examining 
the tendency of the couple material-flow on producing unbounded growth of the vector connecting the two beads of 
the dumbbell model. 
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Since the dumbell model can capture elastic effects, the microstructure resists deformation through a restoring force. 
It can be shown that, for steady motions, the average end-to-end vector evolves like 

 
 
 
 

where H is the constant spring stiffness and $zeta$ is the constant frictional factor between the beads and the 
solvent. The strong flow condition is determined by 

 
 
 
 

where Max_{Re} is a function that returns the maximum value of the real part of its arguments, lambda^L_i are the 
eigenvalues of the transpose of the velocity gradient L and \theta=\frac{\zeta}{4H} is the Rouse relaxation time. 
The idea developed by Tanner (1976), based on Tanner and Huilgol (1975), is to apply a classical linear stability 
method, finding the Lyapunov exponents of an equation of the form  
            

! 

˙ x = Ax  
 
If the eigenvalues of tensor A have a positive real part, this means that we have an unbounded growth of x. When 
applied to a micro-structure that can be represented by a vector, the resulting matrix can be interpreted as the 
velocity gradient that is experienced by the micro-element. 

An interesting extension of this study was conducted by Doshi and Dealy (1987) by considering effects of 
Brownian forces in an exponential shear flow. One of the  conclusions was that, in exponential shear flows, 
neglection of Brownian effects leads to strong flows only after a certain value of the product between exponential 
rate and relaxation time, an important dimensionless parameter of the problem. It is worth noting that these 
theoretical analysis were based on a specific model for the microstruture and its interaction with the main flow. The 
conclusions are, therefore, restricted to materials-processes that are well represented by them. For branched 
polymers undergoing the same flow, for example (Venerus, 2000), other results can be expected. 

The work done by Olbricht et al. (1982) is remarkable in the sense that is probably the most complete criterion 
for flow classification that is related to material response available in literature. There was conducted a very elegant 
analysis extending Tanner (1976) results by the inclusion of other types of material responses then the ones 
predicted by the classical dumbbell. In their approach, they consider a more general evolution equation for 
conformation which was represented by a vector variable, ${\bf R}$, or its dyadic tensor, ${\bf R}{\bf R}$. The 
vector form is 

 
.

( ) ( : )
1 1

F
G G

F F

!
= + " # #

+ +

.

R D W R D rr R R  

where D and W are , respectively, the symmetric and skew-symmetric parts of the velocity gradient and G, F and α 
are parameters that, when appropriately chosen represent the internal features of the micro-element and it interaction 
with the bulk flow. This equation encompasses a large variety of  microstructured systems such as diluted emulsions 
and diluted polymeric solutions. The strong-flow criterion is to consider a similar to Tanner’s approach and examine 
the eigenvalues of  
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L
micro

 can be interpreted as the velocity gradient that is experienced by the micro-element. Therefore, the 
same criterion is applied: if there is at least one eigenvalue of this tensor with a positive real part, the flow is 
considered strong. 
 
Khakhar and Ottino (1986) have given an interpretation of G, F and α  for the case of slender drops. In this case, 
these coefficients are non-linear. They found the following expressions for these parameters 
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where R = R  is the length of the drop,

e
µ  is the viscosity of the fluid the drop is immersed,

i
µ  is the viscosity of 

the drop and 
ei

p µµ /=   is the viscosity ratio. The model above is valid in the case of slender drops )1/( <<Ra  

for a low viscosity ratio ( 1<<p ). 
 
 
 
3. THE PRESENT APPROACH 
  
 
The first part of this work is related to the investigation of the evolution of a drop of water when immersed on a 
continuous phase of oil with typical features of the field of Jubarte in Campos bay. For this purpose we will use the 
evolution equation proposed by Olbritch et al. (1982), with the coefficients as suggested by Khakhar and Ottino 
(1986). The parameters used were given in a work report of PETROBRAS. They are 
 

 Oil Viscosity (µe) = 50,6 cP = 0,0506 Pa.s 

 Oil density (ρe) = 950,6 kg/m³ 

 Water Viscosity (µi) = 1,0 cP = 0,001 Pa.s 

 Water density (ρi) = 1050,0 kg/m³ 

 Interfacial tension (σ) = 25 dina/cm = 0,025 N/m 

 Mean diameter of a spherical drop = 50µm 

 
In fact we have computed this evolution with 5 different initial orientations: 0, π/6, π /4, π /3, and π /2 as shown by 
the figures below 
 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
 

 
Figure 1 – Initial orientations of the drop of water immersed in oil considered: a) 0, b) π/6, c) π /4, δ) π /3, and e) π 
/2. 
 
 
One of the main ideas developed here is to based on the fact that there is an infinity of possibilities, when examining 
the evolution equation proposed by Olbritch et al. (1982), to transform it to a the form 

! 

˙ x = Ax , therefore leading to 
different sets of Lyapunov exponent solutions. We advocate that the best choice is to consider  
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4. RESULTS 
 
4.1 Simple shear flow 
 
 
The results show, as expected, that there is an attractor direction at 

! 

" = 0. The evolution of the orientation of the 
five drops considered are shown in Fig. 2. Here we can see a monotonic behavior between the different drops. 
 
 
 
 
 
 
 
 
 
 



 
 
 

Figure 2. Evolution in time of the orientation of five differently oriented drops in a shear flow. 
 

In the case of the stretching rate computed for the different drops as depicted in Fig. 3, we can see that there is a 

more  
 

 
 Figure 3. Evolution in time of the stretching rate of five differently oriented drops in a shear flow. 

 
complex competition between rate of rotation and rate of deformation. Therefore, we can see the cross-over 
evolution between the drops. This happens because the orientation of maximum stretching rate, which is π /2 in the 
case of shear flows, is different from the orientation of maximum deformation rate, which is π /4 in the case of shear 
flows. 
 
 
4.2 Extensional flows 

 
 

For extensional flows, we can see, from Fig. 4, that, again, we have a monotonic behavior. It is worth noticing 
that in the case of a drop initially aligned to a main axis of the flow, there is no change in its orientation. It is also 
interesting to note that π /2 consists of an unstable orientation attractor, while 0, is a stable orientation attractor, 
since every orientation in between these values are attracted to the second one. This fact shows that uniaxial 
extension is a strongly aligning flow. 
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Figure 4. Evolution in time of the orientation of five differently oriented drops in an extensional flow. 

 

 
Figure 5. Evolution in time of the rate of stretching of five differently oriented drops in an extensional flow. 

 
Figure 6 shows the two principal directions of the rate-of-strain as seen by the micro-element. In blue is the 
principal direction using the velocity gradient as suggested by Olbritch et al. (1982). In red the one of the present 
approach. This is for the case of the drop which is at the orientation of π/6. 
 

 
 
 
 
 
 
 
 
 
 
 



 
 

 
Figure 6. Difference between the principal directions of the deformation rate considering Olbritch et al. (1982), in 
blue and the present work, in red. 
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