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Abstract. An intriguing result which is not consensually explained is the drag reduction that occurs when a few ppm
of a polymer with high molecular weight is added on a turbulent Newtonian flow. This problem deals with one of the
most challenging subjects of Fluid Mechanics nowadays: turbulence of non-Newtonian fluids which combines complex
phenomenon with complex material. It is consensual, however that the elasticity gained by the material by the addition of
the polymer acts in a way that turbulence is inhibited and, therefore, drag is reduced. Here, data from a DNS calculation
of a viscoelastic FENE-P material in the channel flow are used to understand some aspects of the mechanism of drag
reduction. We first correlate the terms from the mean momentum equation that need closure models to the mean kinematic
quantities such as D, D2 and D ·

(
W −ΩD

)
−
(
W −ΩD

)
·D, where D and W are, respectively, the symmetric and

skew-symmetric parts of the velocity gradient and ΩD is the spin tensor related to the rotation of the eigenvectors of D.
These correlations are compared to the Newtonian case. After that, we correlate the conformation tensor (an average
quantity that represents the main aspects of the configuration of a set of polymer molecules) to the anisotropic Reynolds
stress and identify regions where these two tensors are in-phase and out-of-phase. The approach employed in the present
work indicates a path to construct models for the turbulence of viscoelastic materials.
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1. INTRODUCTION

1.1 Turbulence of viscoelastic fluids

When a few parts per million of a polymeric material of a high molecular weight is added to a Newtonian turbulent
flow, in a pipe for example, the drag reduces by large amount: 40%, 50%, sometimes up to 70%. This fact was verified
in a number of experimental investigations and is well documented in Virk (1975). Although this phenomenon has been
observed and verified, the true mechanism that leads to the drag reduction by polymer additives is still an open question.
The results indicate, however, that only liquids with elastic properties are capable of producing a reduction on the drag.
From some experimental data Virk et al. (1967, 1970) divided the domain in three sub-domains. Basically the viscous
sub-layer and the turbulent core remain with the same features as the Newtonian ones. The difference occurs, mainly,
at an intermediate layer where now there is a competition (not between inertial and viscous effects, as in the Newtonian
case, but one) between elastic and viscous effects.

The theories presented by Lumley (1977) and Hinch (1977) are worth noting. They correlate the drag reduction
phenomenon to an important rheological property of viscoelastic fluids: its extensional-thickening behavior. The turbulent
flow does not exhibits a high correlation between the rate of angular deformation and the rate of linear deformation.
Therefore, most of the polymer molecules, specially when they have long chains (in opposition to branched chains),
can be oriented to the same direction for a long time. This kind of exposure to the main kinematics of the flow can
highly distort the conformation of the molecule, and this characterizes a strong flow. In this case, the resistance to the
extensional deformation, the extensional viscosity, can increase more then 104 times. This increase of resistant forces can
alter dramatically the flow structure associated to the mechanisms of production and dissipation of turbulence which, at
the end, changes the drag at the wall.

Since the theories to explain the drag reduction phenomenon are not consensual, investigations employing DNS cal-
culations can be extremely helpful to understand the turbulence of viscoelastic liquids and, therefore, bring some light
to this complex subject. It is worth noticing, however, that DNS simulations for viscoelastic liquids is philosophically
different from its Newtonian counterpart. The reason for this difference is because the expression Newtonian liquid refers
to a real fluid while the expression FENE-P liquid, for example, refers to a model of a fluid. This happens because there
are liquids whose behavior, captured by measurements, adhere excellently to the hypothesis of a Newtonian constitutive
model. On the other hand, there is no liquid which has an excellent degree of agreement to the hypothesis of an specific
viscoelastic constitutive model.

In spite of these considerations, there has been some consistent studies using DNS simulations with viscoelastic
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liquids in the last decade. The works of Massah and Haratty (1997), Sureskumar et al. (1997) and Dimitropoulos et
al. (1998,2001) are of particular interest. They have used FENE-P and Giesekus models in their DNS simulations and
found qualitative agreement with experimental results. The recent developments in DNS of viscoelastic models allow the
reduction of the numerical diffusion due to formulations that are based on the evolution of the conformation tensor and,
therefore higher level of Reynolds number were achieved. The investigations of Housiadas and Beris (2004a, 2004b) and
Li et al. (2005) have found higher values of drag reduction, a consequence of the higher levels of Reynolds number, then
the ones obtained previously.

In the present work DNS data for turbulent viscoelastic FENE-P model is filtered to find the part of the anisotropic
Reynolds stress which is linear to the rate-of-strain tensor.

2. THEORETICAL ANALYSIS

2.1 Decomposition of a tensor with respect to another

2.1.1 General

Let us consider two second order tensors U and V . There is a family of decompositions of tensor V with respect to U
that is relevant in the present analysis. This family of decompositions decompose V into two additive parts as

V = P U
V + P̃

U
V (1)

that enjoy the following properties

i) P UV and P̃
U
V are orthogonal1.

ii) U and P UV are coaxial2

iii) U and P̃
U
V are orthogonal.

If U and V were first order tensors, there would be an unique pair {P UV , P̃
U
V} that could satisfy properties (i)-(iii).

Since U and V are second order tensors, these properties do not decompose V in an unique manner. Essentially this
happens because it is possible for a tensor to commute with and be orthogonal to a second tensor at the same time. A
simple example that can illustrate this fact is the pair rate-of-strain tensor, D, and the identity tensor, 1 for the case of
an incompressible fluid. The identity tensor commutes with any other tensor and tr (D · I) = trD = 0. Therefore, to
construct the family of decompositions indicated, we can start from splitting tensor V into three parts as

V = ϕU
+

V + ϕU
±

V + ϕU
−

V (2)

where ϕU
+

V is a part of V that commutes with, but is not orthogonal to U , ϕU
±

V commutes with and is orthogonal to U ,
and ϕU

−

V does not commute with but is orthogonal to U . To enjoy the properties discriminated above, it can be shown

that the quantities {P UV , P̃
U
V} obey the following relations

ϕU
+

V ⊆ P UV ⊆ ϕU
+

V + ϕU
±

V (3)

ϕU
−

V ⊆ P̃
U
V ⊆ ϕU

−

V + ϕU
±

V (4)

In other words, uniqueness of the decomposition depends on a criterion of inclusion of tensor ϕU
±

V , or parts of it, in

each group P UV or P̃
U
V . The two extreme cases of this decomposition constitute the basis of the present analysis and are

explored next.

2.1.2 Decoupling a tensor into a proportional and an orthogonal parts

In the scope of the present work, where turbulence modelling is considered, the analysis is carried out with the
particular case where U and V are symmetric tensors. This is justified by the symmetry of the Reynolds stress and the
kinematics tensors that compose the basis used to represent it. The first possible decomposition considered is when

P UV = ΦU
¬⊥

V ≡ ϕU
+

V (5)

P̃
U
V = ΦU

⊥

V ≡ ϕU
±

V + ϕU
−

V (6)

where ΦU
⊥

V and ΦU
¬⊥

V are, respectively the orthogonal and the non-orthogonal parts of V related to U .

1Two tensors A and B are orthogonal if (and only if) tr
`
A ·BT

´
= 0, where tr is the trace operator and the superscript T denotes transposition.

2Two tensors are coaxial if (and only if) they share the same eigenvectors. This condition is satisfied if (and only if) they commute.
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This form of partition was employed by (e.g. Rajagopal and Srinivasa (2005)). Since every tensor commutes with
itself, U is part of the basis of tensors that are coaxial to itself. In other words we can write V as

V = ςU + W (7)

Besides that, U is a symmetric non-zero tensor and, therefore, it cannot be orthogonal to itself (trU2 6= 0). On the
other hand, we can choose ς in such a way that W is orthogonal to U . If we take the inner product of Eq.(7) with respect
to tensor U and impose tr (W · U) = 0 we have that

ς =
tr (V · U)
tr (U · U)

=
V : U
U : U (8)

In the case of this decomposition, P UV is the part of V that is proportional to U or P UV = ςU .

2.1.3 Decoupling a tensor into a coaxial and an orthogonal parts

In Thompson (2008) a decomposition theorem was presented. Here we give a particular aspect of it as follows. Let us
consider two second order symmetric tensors U and V . Let us call eUi and λUi the (real) unit eigenvectors and eigenvalues
of tensor U , respectively. Let us define a fourth order tensor 1UU as

1UU =
3∑
k=1

eUk eUk eUk eUk (9)

and a decomposition of tensor V , such that

V = ΦUV + Φ̃
U
V (10)

where

ΦUV = 1UU : V (11)

Φ̃
U
V =

(
1δδ − 1UU

)
: V (12)

and 1δδ is the fourth order identity tensor that when applied to any second order tensor maps this tensor to itself, as
follows

1δδ : B = B (13)

In this case, from Eqs.(3) and (4) we can identify

P UV = ΦUV = ϕU
+

V + ϕU
±

V (14)

P̃
U
V = Φ̃

U
V = ϕU

−

V (15)

Then, the decomposition given by Eqs.(10), (11), and (12) have, besides properties (i)-(iii), the following ones

• U : V = U : ΦUV

• Ξ̃ [U ,V ] = Ξ̃
[
U , Φ̃

U
V

]
where the second order tensor-valued function Ξ̃ [U ,V ] denotes the Lie product between any two second order tensors,

defined as

Ξ̃ [U ,V ] ≡ U · V − V · U (16)

In a matrix form Eq.(10) is written as

[
VU
]

=

 VU11 VU12 VU13
VU21 VU22 VU23
VU31 VU32 VU33

 =

 VU11 0 0
0 VU22 0
0 0 VU33

+

 0 VU12 VU13
VU21 0 VU23
VU31 VU32 0

 (17)

Because of the above properties, tensors ΦUV and Φ̃
U
V were called (Thompson (2008)) the in-phase and out-of-phase

parts of V with respect to U . The following properties are important in the present context
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1. When tensors U and V commute, ΦUV = V and Φ̃
U
V = 0.

2. When V = AS · BW − BW · AS , where AS is symmetric tensor which commutes with U and BW is skew-

symmetric, ΦUV = 0 and Φ̃
U
V = V .

It is worth noting that since ΦUV and Φ̃
U
V are orthogonal (or uncorrelated), the norm of V , ‖V‖ =

√
V · VT is given

by √
V · VT =

√(
ΦUV + Φ̃

U
V

)
·
(
ΦUV + Φ̃

U
V

)T
=
√
‖ΦUV‖2 + ‖Φ̃

U
V‖2 (18)

A normalized parameter that measures how tensor V is in-phase with tensor U can be constructed by the relation

Φ̂UV = 1− 2
π

cos−1

(
‖ΦUV‖
‖V‖

)
(19)

Φ̂UV ∈ [0, 1], where Φ̂UV = 0 being the case where U and V are uncorrelated and Φ̂UV = 1 when U and V are coaxial,
i.e. share the same eigenvectors.

2.2 The approach of the present analysis

The Reynolds stress tensor, R, is defined through

R = u′iu
′
jeiej (20)

where u′i are fluctuations of the i-component of the velocity and the overline, () indicates the average operation. The
Boussinesq hypothesis (Boussinesq (1877)), is based on the the assumption that the turbulent shear stress is linearly
dependent on the velocity gradient. Therefore the structure of the relation between molecular shear stress and kinematics
is maintained for the turbulent shear stress. Hence, for a 2-D cartesian flow where x is the coordinate along the wall and
y is orthogonal to this wall

−u′v′ = νT
∂U

∂y
(21)

where νT is a “turbulent viscosity".
The generalization of this hypothesis was done by Komolgorov (1942). Let us considered tensor b, the anisotropic

Reynolds stress defined as

b = −
(

R− 1
3

trR
)

(22)

Therefore, a tensor version of Eq.(21) can be written as

b = 2νTD (23)

where D is the symmetric part of the mean velocity gradient. Let us suppose we have obtained the Reynolds stress
(and therefore b) from a DNS or experimental data. Let us suppose this same source has provided us with some kinematic
information such as the velocity profile. Therefore, one can calculate D. How can we test if Eq.(23) holds? Or, what is a
better approach, how can we quantify how Eq.(23) adheres to the data in a general flow? And how can we obtain νT ?

The approach used here, in this first analysis is to decompose tensor b into a tensor which is proportional to D and a
tensor which is orthogonal to D, D⊥. Hence,

b = αD + βD⊥ (24)

If we take the inner product of Eq.(24) with respect to D and impose that tr
(
D⊥ ·D

)
= 0, we have that

α =
tr (b ·D)
tr (D ·D)

(25)

Therefore, α is the best scalar that can be related to the turbulent viscosity defined by Eq.(23). The idea here is to
present this scalar in the usual dimensionless form (Cµ) where the kinetic energy and dissipation are used to compose a
quantity with the viscosity dimension. Therefore

α = 2Cµ
k2

ε
(26)
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An important index of the present analysis is a global measure of how important is the term αD when compared to b,
in other words, how Komolgorov’s Eq.(23) can fit DNS or experimental data.

Based on Eq. (19), this parameter, indexI , is given by

indexI = 1− 2
π

cos−1

(√
tr (α2D2)

tr b2

)
(27)

and, by construction, indexI is a normalized parameter (indexI ∈ [0, 1])

3. DNS DATA

The channel flow direct numerical simulations (DNS) were conducted in a rectangular channel at an imposed moderate
zero-shear frictional Reynolds number Reτ = 180, corresponding to a Newtonian bulk Reynolds number Rebulk = 2800
based on the channel half-height h. The channel size is Lx = 4πh, Ly = 2h, Lz = 4/3πh. In the homogeneous
directions, these amount to Lx+ ' 2300 and Ly+ ' 750 in wall units.

The DNS grid has 128 × 129 × 128 points in the respective streamwise, wall-normal, and spanwise directions, i.e.
∆x+ ' 17 and ∆z+ ' 6 in the homogeneous directions. The grid in the wall-normal direction has a tanh distribution
such that 0.2 ≤ ∆y+ ≤ 7 and incorporates about 20 points in the first 10 wall units, which is enough to resolve the
smallest turbulent structures in the near wall region. The time step used on this grid is ∆t = 0.001h/uave.

The non-Newtonian version of the numerical code which was developed for the present study is a direct extrapolation
of the code described in detail by Tejada-Martínez and Grosch (2007). The code uses the Message Passing Interface
protocol following the same parallel structure presented by Winters et al. (2004). Only a brief description will be given
below. The momentum equations are solved with a hybrid spectral finite-difference scheme. A two-dimensional Fourier-
spectral discretization is used in the homogeneous directions (x, z) whereas 6-th order compact finite difference formuli
are used in the wall-normal direction y (Lele Carpenter (1992)), downgraded to 5-th order at the first two boundary
points (Carpenter (1993)). The time advancement of the solution consisted of the second order time-accurate pressure
correction scheme on a non-staggered grid analyzed by Armfield and Street (2000). This procedure uses the implicit
mid-point trapezoidal rule for viscous terms and the explicit second-order accurate Adams-Bashforth rule for advection.
Furthermore, the three half rule is used for de-aliasing all the non-linear terms, along each one of the periodic directions.
The boundary conditions for the conformation tensor are imposed following the guidelines of Sureskumar et al. (2001).
The conformation tensor equations without artificial difusivity are first updated right at the top and the bottom boundaries
of the channel. These values are then used as boundary conditions to step forward the full conformation tensor equations
(including artificial diffusivity). This scheme proves stable provided a sufficient amount of artificial stress diffusivity
imposed.

4. PRELIMINARY RESULTS

The instantaneous dissipation was computed during the first half of the DNS simulations and the average was taken
from that point. The kinetic energy was computed after the hole simulation, as a post-processing quantity. A general
result is the production over dissipation

(
P
ε

)
as a function of position in wall units. This is presented on Fig.(1). Here we

can see a continuously behavior as elastic effects are increased. There is a peak where the dissipation is minimum and
also a beginning of plateau where production and dissipation reach an equilibrium. After a certain value of y+, the power
of the flow, due to its low Reynolds number makes the production to diminish its strength till the center of the channel
where there is no production.

4.1 Analysis of the part of the Reynolds stress tensor which is linear with the rate-of-strain

The result concerning a dimensionless viscosity coefficient, Cµ, as stated by Eq.(25) is shown in Fig.(2). We can also
see a tendency of the general behavior of the fluid as elasticity is increased. There is a peak and, after that, Cµ decreases
monotonically till a certain value near the center of the channel.

Figure (3) shows the profile of indexI , the importance of αD on the Reynolds stress tensor, as given by Eq.(27). We
can see that the maximum value decreases as elasticity increases.

5. FINAL REMARKS

The general results obtained show that as elasticity increases the part of the Reynolds stress that is proportional to D
decreases. Further investigation is needed.
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Figure 1. Production over dissipation.
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Figure 2. Dimensionless viscosity coefficient.
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Figure 3. Index I, a measure of the hypothesis that the Reynolds stress tensor is a linear function of D.
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