
Proceedings of ENCIT 2008 12th Brazilian Congress of Thermal Engineering and Sciences
Copyright © 2008 by ABCM November 10-14, 2008, Belo Horizonte, MG

HIGH PERFORMANCE COMPUTING FOR NUMERICAL FLUID FLOW
SIMULATION

Cristiane Cozin, criscozin@yahoo.com.br
Rigoberto Morales, rmorales@utfpr.edu.br
 PPGEM – Federal University of Technology-Paraná - Av. Sete de Setembro 3165, CEP. 80230-901, Curitiba-PR-Brasil.

Ricardo Lüders, luders@utfpr.edu.br
CPGEI – Federal University of Technology-Paraná - Av. Sete de Setembro 3165, CEP. 80230-901, Curitiba-PR-Brasil.

Abstract. In recent years, computer cluster has emerged as a real alternative to solution of problems which require
high performance computing. Consequently, the development of new applications has been driven. Among them, flow
simulation represents a real computational burden specially for large systems. This work presents a study of using
parallel computing for numerical fluid flow simulation in pipelines. A mathematical flow model is numerically solved.
In general, this procedure leads to a tridiagonal system of equations suitable to be solved by a parallel algorithm. In
this work, this is accomplisehd by a parallel odd-oven reduction method found in the literature which is implemented
on Fortran programming language. A computational platform composed by four desktop computers with a total of
twelve processors was used. Many measures of CPU times for different tridiagonal system sizes and number of
processors were obtained, highlighting the communication time between processors as an imporant aspect to be
considered when evaluating the performance of parallel applications.

Keywords: computational flow simulation, tridiagonal system equations, high performance computing

1. INTRODUCTION

In computational mechanics, physical phenomena are mostly modeled by differential equations that do not have an
analytical solution. In this case, a discretization is necessary to numerically solve them and results are compared with
analytical solutions when it exists or with experimental data.

Depending on the application, numerical simulation requires a high computational effort. Although supercomputers
can be considered in this case, the associated cost is generally prohibitive. However, High Performance Computing
(HPC) has widely been used not only to designate supercomputers, but to characterize an intensive use of computational
resources to solve problems that could take a prohibitive time to be solved in a single CPU. This term includes not only
computers, but also networking technology, algorithms and the environment necessary to build such a system which can
be represented by clusters of personal computers (Carvalho Jr., 2007).

Processing architecture in parallel computing is for the resolution of problems calling large computational effort and
to submit a resolution to the appropriate structure in parallel. This structure provides the subdivision of the problem on
tasks that could be implemented in parallel. Unfortunately, not all problems are parallel, and its resolution inherently
sequential.

Parallel algorithms has been implemented for the solution of the conservative equations (Dou e Phan-Thien, 1997;
Byrde et al., 1999; Passoni, 2001) using domain decomposition. The authors examined communication influence
between the processors for each form of domain decomposition. The conclusion was obtained by the authors that the
efficiency of the algorithm is heavily dependent on refining and partitioning the mesh, and the number of processors.

In this paper, we developed a parallel program for the solution of the conservative equations with the finite
differences method. The program is the optimized solution tridiagonal system of linear equations from discretization of
the equations of conservation. To execute the program was used a cluster of computers administered by Windows®
Compute Cluster Server® 2003. We compute some examples to test the parallel algorithm. The communications effects
on the performance of the algorithm are discussed.

This paper is organized as follows. Section 2 presents some mathematical background for modeling a laminar
incompressible fluid flow. Emphasis is given to the algebraic system structure obtained after discretization. Section 3
discuss the parallel algorithm used to solve a tridiagonal linear system which results are presented in Section 4. Finally,
Section 5 presents some concluding remarks.

2. MATHEMATICAL AND NUMERICAL MODELING

In this section, a general modeling for a laminar incompressible fluid flow is presented. Such model requires a

numerical method to be solved since analytical solutions exist only for particular cases. Numerical methods are based
on discretization of equations which leads to algebraic systems. In general, a first-order discretization generates a
tridiagonal linear system of equations to be solved. In this work, we are interested on the solution of such systems by
parallel algorithms. This procedure can be summarized as below.

The motion of a laminar incompressible fluid can be described by Eq. (1) for mass conservation and linear
momentum.

() ()j

j j j

u
S

t x x x φ

ρ φρφ φ∂ ⎛ ⎞∂ ∂ ∂
+ = Γ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

+ (1)

with dependent variables vector φ , denotes diffusivity of Γ φ and source term Sφ .

Discretization of Eq. (1) over a control volume is done by using the hybrid difference scheme. The final discrete
equation can be expressed as

()= ∑ +P P NB NBa aφ φ b

V

P

 (2)

where

() 0= ∑ + − ΔP NB P Pa a a S (3)

0 0
C Pb S V a φ= Δ + (4)

The subscript P in Eq. (3) and (4) denotes values for the current point. The sum reflects the idea that defines the
structure of the matrix, depending on the order of discretization. If the discretization is the first order get a tridiagonal
matrix, the second order get a pentadiagonal matrix and so on. The superscript 0 denotes values for past time step and b
includes all terms explicitly calculated (including source terms). In addition, the source term is arbitrarily split into a
constant and a linear terms in φ . Further information can be found in Patankar (1980).

Particularly, we consider the system of equations given by Eq. (1) as tridiagonal systeml. It can be solved by TDMA
(Tridiagonal Matrix Algorithm - Versteeg and Malalasekera, 1995). This kind of linear system arises on many other
problems when partial differential equations are numerically solved by a first-order discretization.

3. TRIDIAGONAL SYSTEMS SOLUTION

Several methods are found in the literature for solving tridiagonal linear system of equations. Among them, the Odd-
Even Reduction method is chosen here due to its simple implementation (both for sequential and parallel versions) and
previous success works (Stone, 1973) and (Saukas and Song, 1997). Stone (1973) has proposed a methodology using a
doubling recursive technique suitable to implement on vector computers with SIMD architecture (Single Instruction
Multiple Data). Saukas and Song (1997) has proposed a more simple method using substitution of variables which is
suitable to implement on clusters as presented below.

3.1. Sequential Odd-Even Reduction

Consider a linear system Ax b= where [A] is a tridiagonal matrix of order N. It means that all its elements in A are
null, except those of diagonal and immediately above and below it. The numerical example given by Eq. (5) is used to
show how the sequential Odd-Even Reduction algorithm works.

1

2

3

4

5

6

2 1 0 0 0 0 1
1 2 1 0 0 0 0

0 1 2 1 0 0 0
0 0 1 2 1 0 0
0 0 0 1 2 1 0
0 0 0 0 1 2 1

x
x
x
x
x
x

− ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− − ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟− −

=⎜ ⎟⎜
− − ⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟− −
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

⎟ ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (5)

By replacing 1x , 3x and 5x as function of 1x , 1x the reduced system of Eq. (6) is obtained.

Proceedings of ENCIT 2008 12th Brazilian Congress of Thermal Engineering and Sciences
Copyright © 2008 by ABCM November 10-14, 2008, Belo Horizonte, MG

2

4

6

2 1 0 1
0 3 2 1
0 1 3 2

x
x
x

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− =⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (6)

Similarly, by replacing 2x and 6x as function of 1x results 4 1x = . Backing to Eq. (6) and 2 1 x = 6x 1= are

obtained and finally , and 1x =1 3x 1 = 5 1 x = from Eq. (5). In general, for each step of the Odd-Even Reduction
algorithm the original system is reduced by alternating a substitution of odd and even variables. This algorithm presents
good numerical properties for a diagonally dominant matrix (Saukas and Song, 1997), i.e. for all i such that

ii ij
j i

A A
≠

> ∑ .

Table 1 – Numerical Example for Parallel Odd-Even Reduction

Step Main Processor

1 The original system is split into two systems for processors 1 and 2

Step Processor 1 Processor 2

1 2

1 2 3

2 3 4

2 1
2 0
2 0

x x
x x x
x x x

− =⎧
⎪− + − =⎨
⎪− + − =⎩

3 4 5

4 5 6

5 6

2 0
2 0

2 1

x x x
x x x

x x

− + − =⎧
⎪− + − =⎨
⎪ − + =⎩

Variable x2 is isolated:

()2 1
1
2 3x x x= +

Variable x5 is isolated:

()5 4
1
2 6x x x= +

By replacing x2 into the system gives:

1 3

1 3 4

3 2
3 2

x x
x x x

− =⎧
⎨− + − =⎩ 0

0

By replacing x5 into the system gives:

3 4 6

4 6

2 3
3 2

x x x
x x

− + − =⎧
⎨ − + =⎩

2

The above two-dimensional system is
send back to the main processor.

The above two-dimensional system is
send back to the main processor.

Step Main Processor
It receives the reduced systems generated by processors 1 and 2 and it composes a
new system:

1 3

1 3 4

3 4 6

4 6

3 2
3 2

2 3
3 2

x x
x x x
x x x

x x

− =⎧
⎪ 0

0
− + − =⎪

⎨− + − =⎪
⎪ − + =⎩

The above system can then be solved for x1, x3, x4 and x6 which are send back to
processors 1 and 2, respectively.

3

Main Processor sends to Processor 1 the results for x1 and x3 and, Processor 2 the
results for x4 and x6.

Step Processor 1 Processor 2
Receive solution: x1=1 and x3 = 1 Receive solution: x4=1 e x6 = 1
Replacing x1=1 and x3 = 1 in

(2 1
1
2

)3x x x= + , obtained the result

x2 = 1.

Replacing x4=1 and x6 = 1

in (5 4
1
2

)6x x x= + , obtained the

result x5 = 1.

4

The result is send back to the main
processor.

The result is send back to the main
processor.

Step Main Processor
5 Composes the complete system solution.

3.2. Parallel Odd-Even Reduction

By considering the same system given by Eq. (5), this section presents a parallel implementation of the Odd-Even

Reduction Method using a cluster of computers with three processors. This is summarized in Tab. 1, where five steps
are assigned to execute on processors 1, 2 and on the main processor.

According to Tab.1, step 1 is necessary to split by two the original system. This corresponds to divide matrix A into
the first three lines for processor 1 and the last ones to processor 2. Each processor reduces in step 2 its corresponding
system by replacing variables until only two variables remain. Then, each one sends back the reduced system to the
main processor. The main processor receives in step 3 the system from each processor and solve it. Note that the main
processor always solves a 2p-linear system of equations (where p is the number of processors). Finally, processors 1
and 2 complete in step 4 their solutions by substituting values received from the main processor which composes the
complete system solution in step 5.

4. RESULTS

According to Section 1, HPC applications are used to provide a computational time reduction compared to a single

processor. However, the results obtained show that significant differences are observed indicating that communication
time between processors cannot be underestimated.

The results are obtained by implementing in Fortran the Odd-Even parallel reduction in a cluster given by Tab. 2.
The numerical tridiagional linear system is similar to the one given by Eq. (5), but varying its dimension n. Again, the
system solution is xi=1 for all i=1,…,n.

Table 2 - Configuration of desktops that make up the cluster

Computer Settings

NODE 1 (main) Intel Core 2. 2.4 Gb, 1 Gb de RAM

NODE 2 Intel Core 2. 2.4 Gb, 1 Gb de RAM

NODE 3 Intel Xenon Quad Core, 1.6 Gb, 4 Gb de RAM

NODE 4 Intel Core 2 Quad, 2.4 Gb, 2 Gb de RAM

Execution time measures were obtained through CPU_TIME function available on Intel® Visual Fortran. This

function was inserted on suitable points of Fortran program to allow independent measures of calculation and
communication times. Moreover, time measures corresponds to mean values obtained for ten replications of each case.

Figure 2 shows total CPU time for different system dimensions and number of processors. Note that CPU time
increases with the number of processors. Moreover, a large increase is observed for big values of n.

Figure 2 – Total CPU time for different system dimensions and number of processors.

Proceedings of ENCIT 2008 12th Brazilian Congress of Thermal Engineering and Sciences
Copyright © 2008 by ABCM November 10-14, 2008, Belo Horizonte, MG

This is contradictory to the HPC goal of CPU time reduction. However by dividing time measures between
calculation and communication times, other information can be obtained as shown in Fig. 3 e Fig. 4.

Figure 3 shows the corresponding calculation time, i. e. CPU time due to computation of the odd-even algorithm. In
contrast, Fig. 4 shows the corresponding communication time between processors, i. e. time spent for waiting data
exchange to be finished. Note that Fig. 3 presents an expected behavior for a parallel implementation since CPU time
decreases as the number of processors increases (for all values of n). This behavior is also reported by Saukas and Song
(1997) using a vector computer which has tight coupled processors.

The timing of communication is a factor of extreme importance which should be given special attention. "Time of
communication" refers to all computational processes that are not routines of calculation, thus, the time of
communication also includes other factors, the time for the allocation of memory. In these tests used a hub for
transmitting data at speeds of 100 MBits. The timing of communication is highly influenced by the topology of network
used.

Figure 4 presents a graph is the time for communication with the number of processors used for various values of n.
In this case, it appears that the time of communication increases as increasing the number of processors.

Figure 3 - Calculation time Figure 4 - Communication time between processors

It can be seen from Fig. 3 and Fig. 4 that the communication time has the same order of calculation time for p<6 and

n<900000, but for big values of n the communication time is about 30 times of the calculation time. This means that
almost all time is spent for data communication between processors and no useful computation is made. This clearly
shows that applications having a fast distributed calculation time could be depreciated in computer architectures with
low coupled processors like clusters.

5. CONCLUSIONS

Fluid flow behavior can be simulated by numerically solving a mathematical model of partial differential equations.

In general, such procedure requires a high computational effort and consequently large execution times. High
performance computing (HPC) is therefore an attractive alternative. However, a carefully analysis should be made to
evaluate suitable applications. This paper presents a study of HPC application for fluid flow simulation, where the
numerical solution of a tridiagonal system of equations is considered. A computer cluster was used to compute a
parallel tridiagonal system solution implemented on Fortran.

Results show for this application that total CPU time increases with the number of processors. This means that a
superficial analysis could conclude that it is better to compute the application in a single processor. However, a more
detailed analysis shows that calculation time and communication time between processors should be properly evaluated.
Although calculation time decreases with the number of processors as expected, communication time significantly
increases for large values of system dimension. Communication time between processors has thus a significant impact
on the overall performance when using clusters. This behavior is quite different from observed for tight coupled
architectures such as vector computers. Therefore, more promising computer cluster applications have to present a
minor data exchange effort compared to the calculation effort. Other applications can be suitable for multicore
computers having no distributed memory. This will be subject of future research.

6. ACKNOWLEDGEMENTS

The authors acknowledge the financial support from the National Agency for Petroleum, Natural Gas and Biofuels

(ANP) through its Human Resources Program in UTFPR (PRH-10), CAPES and from TE/CENPES/PETROBRAS.

7. REFERENCES

Byrde, O., Couzy, W., Deville, M. O., Sawley, M. L, 1999, “High-performance parallel computing for incompressible

flow simulations, Computational Mechanics”, Vol 23, pp. 98-107, Springer-Verlag.
Carvalho Junior, F. H., 2007, “Computação de Alto Desempenho em Plataforma Windows”, The Brazilian Symposium

on Programming Languages (SBLP).
Dou, H.-S., Phan-Thien, N, 1997, “A domain decomposition implementation of the SIMPLE method with PVM”.

Computational Mechanics, Vol 20, pp. 347-358, Springer-Verlag.
Patankar, S. V., 1980, “Numerical Heat Transfer and Fluid Flow”. McGraw-Hill, New York.
Saukas, E. L. G., Song, S. W., 1997, “A Parallel Algorithm for Solving Tridiagonal Linear Systems on Coarse Grained

Multicomputers”. São Paulo: USP, IX Simpósio Brasileiro de Arquitetura de Computadores e Processamento de
Alto Desempenho.

Stone, H.S., 1973, “An Efficient Parallel Algorithm for the Solution of a Tridiagonal Linear System of Equations”.
Journal of the Association, Vol 20, N° 1, pp 27-38.

Versteeg, H. K.; Malalasekera, W., 1995, “An introduction to computational fluid dynamics: the finite volume method”.
Essex, Engl.: Longman Scientific & Technical, 257 p.

8. RESPONSIBILITY NOTICE

The authors are the only responsible for the printed material included in this paper.

