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Abstract. Corrugated pipes are used in various engineering applications such heat exchangers and oil transport. In 
most cases these pipes consist of periodically distributed grooves at the duct inner wall. Numerical and experimental 
works reported the influence of grooves height and length in the turbulent flow by inspection of several turbulent 
properties such as velocity fluctuations and Reynolds stress. The present article aims to investigate the influence of 
grooves height and length in the global friction factor of turbulent flow through periodically corrugated pipes. Mass 
and momentum conservation equations are revised and specific boundary conditions are set to characterize a periodic 
fully developed regime in a single axisymmetric bidimensional module which represents the periodically corrugated 
duct geometry. The set of algebraic equations is discretized through the Finite Volume Method, with the Hybrid 
interpolation scheme applied to the convective terms, and solved using the commercial software PHOENICS CFD. The 
simulation of turbulent, incompressible, isothermal and single-phase flow is considered. The algebraic turbulence 
model LVEL is used. Four geometric configurations are assumed, including grooves height and length variations, in 
order to compare their influence on the friction factor. The obtained numerical friction factors show good agreement 
with previous experimental results, specially for Reynolds numbers over 20000. Numerical results for corrugated pipes 
compared to the Blasius smooth pipe correlation shows that the friction factor increases compared to smooth pipes, 
and such increase is more significant for higher Reynolds numbers and for larger grooves as well. These trends appear 
to be related to an enhancement of the momentum transport over the corrugated wall due to the recirculating pattern 
inside the grooves, in accordance with previous experimental works. 
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1. INTRODUCTION  
 

Corrugated walls can be described as rough surfaces consisting of discrete grooves periodically disposed along the 
flow direction, and have been studied for many years, much because of their large use in many engineering devices. 
These studies are carried on many aspects, as heat transfer enhancement, drag reduction, among others. 

Many years later than the work of Nikuradse (1933) on homogeneous sand grain roughness, Perry et al. (1969) held 
one of the first theoretical studies concerning turbulent flow in discrete rough walls. Among many other contributions, 
Perry et al. (1969) proposed a geometric denomination for the discrete corrugated elements based upon the roughness 
length scale related to the flow, as shown in Fig. 1. According to the same authors, for square cavities, Fig. 1-(a), stable 
turbulent vortices are confined inside de cavities, isolating the outer flow from the roughness; the appropriate roughness 
length scale of the flow in this configuration becomes the boundary layer thickness, δ , which has the order of 
magnitude of the pipe diameter, d , in internal flows. For this reason, Perry et al. (1969) denominate surfaces with 
square rough cavities as “d-type” rough walls. Conversely, cavities with large lengths in respect to the cavity height, 
Fig. 1-(b), cannot sustain stable vortices, and the outer flow reattach in the bottom of the cavity; in this configuration, 
the outer flow is then exposed to the ribs, and the boundary layer thickness is no longer an appropriate roughness length 
scale. Now, the cavity height, k , is clearly the appropriate roughness length scale since it plays a much more important 
role in describing the wall roughness. Because of this analysis, Perry et al. (1969) classify cavities with large lengths in 
respect to the rib height as “k-type” roughness, and these two denominations have been widely used ever since. 

Several works followed Perry et al. (1969) on the analysis of “d” and “k” type roughness characteristics. Chen et al. 
(1986) made an experimental study of turbulent air flow in channels with corrugated walls. The main focus were 
investigate the possibility of drag reduction in turbulent flows at low Reynolds numbers associated with the capability 
of various corrugation configurations (such as triangular, trapezoidal and “d-type” square forms) in retaining stable 
vortices and avoiding propagation of turbulent bursts throughout the flow. In fact, the work of Chen et al. (1986) 
emerges of previous observations (Liu et al. [1966], Kennedy et al. [1973] and Walsh & Weinstein [1979]) in which 
was proposed that drag reduction is possible if the dimensionless height, h+ , and pitch, S + , of the cavities were kept 
under 25  and 100 , respectively, with h+  and S +  given by * /h hV ν+ =  and * /S hV ν+ = , where h  and S  are the 



height and pitch of the cavities, *V  is the friction velocity and ν  is the cinematic viscosity. Chen et al. (1986) found that 
for Reynolds numbers under 16000 triangular and trapezoidal corrugation forms with 20h+ �  and 83S + � are capable 
of reducing the global friction factor, in comparison with that calculated for a channel with smooth walls. For 32h+ �  
and still keeping 100S + < , the friction factor tended to be higher than that calculated for smooth wall channels. 

 
(a)

(b)

 
 

Figure 1. Geometry of “d-type” (a) and “k-type” (b) roughness, flow from left to right. (Font: Jiménez [2004], p. 181). 
 
Djenidi et al. (1994), using Laser-Doppler Anemometry, studied the flow over a flat plate with “d-type” roughness. 

The structure of the external flow over a flat plate provided by Djenidi et al. (1994) where a specially designed 
configuration which allowed the visualization of the vortices behavior inside de “d-type” grooves. The main visual 
observation of Djenidi et al. (1994) was that, confronting Perry et al. (1969), “d-type” grooves do not entirely isolate de 
outer flow from the roughness effects. Conversely, there are strong ejections originated in the cavity’s confined vortex 
expelled right to the outer flow, which happens at a time scale close to 5.5 /Uδ ∞ , where U∞  is the bulk velocity. 
Generally speaking, these ejections represent an average enhancement of momentum transfer from the cavity to the 
outer flow, and according to Djenidi et al. (1994) this effect causes global increases in turbulent intensities near the 
wall, including other entities, namely, the Reynolds shear stress, the friction coefficient and thus the average pressure 
drop along the corrugated wall.  

Not just on the form of the cavity, many works investigate the behavior of the friction factor for discrete roughness 
elements helically distributed at the pipe wall along the flow direction. In this field, Silberman (1970) proposed that is it 
possible to reduce drag in helically corrugated pipes (consisting of cavities with a length of the same order of magnitude 
of the ribs height) decreasing the helix angle (i.e. disposing ribs more inclined in the flow direction), and later 
Silberman (1980) demonstrated his previous proposed trend as being correct. On the other hand, Dong et al. (2001) 
showed that spirally corrugated pipes with cavities much larger than the rib height tend to increase the global friction 
factor in comparison with smooth pipes.  

More recently, Morales et al. (2007) held an experimental study in turbulent flow in “d-type” corrugated pipes, with 
both straight and single-start helical grooves. The experimental loop constructed at the LACIT - Thermal Science 
Laboratory of UTFPR - Federal Technological University - Paraná (Morales et al., 2007) was designed to provide 
turbulent water flow in 1 inch diameter pipes, and the obtained data showed that the global friction factor increases in 
corrugated pipes in relation to smooth pipes. 

In light of the wide applicability of these results, with special interest in several industrial devices and optimization 
of oil transport processes, the present paper develops a numerical study of the turbulent flow in corrugated pipes. The 
numerical simulation of the single phase, isothermal and incompressible flow is done using CFD, through the 
commercial software PHOENICS CFD (Spalding, 1994). The influence of the geometric characteristics of the corrugate 
on the friction factor is carried out evaluating four different configurations involving aspect ratios of the grooves and six 
Reynolds numbers. The numerical results obtained for one out of four configurations are validated with experimental 
data obtained by Morales et al. (2007). 
  
2. MATHEMATICAL AND NUMERICAL MODELING 
 

Incompressible and isothermal fluid flow in pipes is governed by mass and momentum conservation equations, and 
in the present work these equations are solved for turbulent flow utilizing the algebraic LVEL turbulence model, 
detailed by Spalding (1994). In the conservative generalized form for steady flow, these conservation equations are 
given by: 

 

( ) ( )V Sρ φ φ∇ = ∇ Γ∇ +
G

i i ,  (1) 
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where ρ  is the fluid density, 1φ =  and 0SΓ = =  for continuity and Vφ =
G

, effμΓ =  (effective dynamic viscosity) and 
S p= −∇  for momentum equations, in the absence of body forces. The zero-equation LVEL turbulence model 
(Spalding, 1994) employs an algebraic equation for the evaluation of the turbulent dynamic viscosity, μt  as follows: 
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where +u  is the dimensionless velocity parallel to the wall, */+ =u u V , κ  is the von Karman constant, 0.417κ =  and 
E  is another constant ( 8.6=E ). The effective dynamic viscosity μeff  used in Eq. (1) is the sum of the turbulent flow 
viscosity and the fluid dynamic viscosity, μ μ μ= +eff t .  

Although these governing equations, together with adequate boundary conditions, represent a complete description 
of the considered problem, some convenient assumptions must be made in order to optimize the solution domain, 
avoiding excessive computational effort to solve a long corrugated duct with several grooves. This is made through the 
periodic fully developed facility, and its basic concepts, followed by its adequate numerical implementation, are 
described in this section.  

 
2.1. The periodic fully developed regime 

 
Corrugated pipes are cylindrical ducts with periodically distributed grooves at the wall, and can be solved as a single 

corrugated domain subject to a periodic fully developed flow, as described by Patankar et al. (1977). Figure 2 shows a 
schematic representation of a corrugated pipe, in which one can easily note that each module, indicated in Fig. 2 with 
dashed lines, repeats itself in identical fashion along the duct. 
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Figure 2. Geometrical scheme for the corrugated pipe analyzed. 
 
As detailed by Patankar et al. (1977), it is assumed that the individualized module is far enough from the entrance 

region that the flow field becomes identical in each module. This analysis carries to the following periodic boundary 
condition for v  and w  velocities (radial and axial components, respectively): 

 
( , ) ( , ),     ( , ) ( , )i i i iv r z v r z L w r z w r z L= + = +   (3) 

 
These rather simple boundary conditions cannot be applied to the pressure, p . However, the pressure gradient 

experiences itself a periodic condition, because far from the entrance region the periodic condition guarantees that, in 
each module, the condition ( , ) ( , ) ( , ) ( , 2 ) ...i i i ip r z p r z L p r z L p r z L− + = + − + =  is valid. Because of this periodic 
behavior, pressure p  is divided in two components: 

 
( , ) ( , )p r z z P r zβ= − + ,  (4) 

 
where the first one, zβ−  represents an overall linear decay of pressure and the second one, ( , )P r z  stands for a 
periodic pressure, which stores all possible pressure variations throughout the module. The pressure gradients terms 

/p r−∂ ∂  and /p z−∂ ∂  in momentum conservation equations are then changed using Eq. (4), resulting in a new source 
term in z-direction momentum equation, β , and new pressure gradient terms to be solved with momentum equations, 

/P r−∂ ∂  and /P z−∂ ∂ . Note that, now, ( , )P r z  is the solved variable, instead of the real pressure ( , )p r z . 



Since β  stands for a constant term which represents the module’s global pressure gradient, Eq. (4) indicates that the 
periodic pressure ( , )P r z  must repeat itself in each module, and then the third relevant boundary condition for the 
problem is: 

 
( , ) ( , ) ( , ) ...i i iP r z P r z L P r z L= + = + =   (5) 

 
Equations (3) and (5) describe the required boundary conditions for v , w  and P  in the flow axial direction, z . In 

the radial direction, r , no-slip condition at pipe wall and symmetry condition at pipe center line require that (see Fig. 2): 
 

(0, )( , ) ( , ) 0,     (0, )=0,       0w zv h z w h z v z
r

∂
= = =

∂
  (6) 

Mass and momentum conservation equations, together with the Zero Equation LVEL turbulence model (Spalding, 
1994) and boundary conditions described in Eqs. (3), (5) and (6) represent a complete mathematical description for the 
periodic fully developed flow in corrugated pipes. Since the flow is periodic fully developed, and not purely fully 
developed, important convective and diffusive terms in the momentum equations cannot be vanished, which leads to a 
complex system of non-linear differential partial equations to be solved. Therefore, a numerical solution is needed, and 
the Finite Volume Method described by Patankar (1980) is used. The most relevant considerations in this approach are 
made in sub-section 2.3. Before treating the problem numerically, however, it is interesting to define the geometrical 
domain to be further considered, which results from the assumption of periodic fully developed flow. 

 
2.2. Geometrical modeling 

 
As already previously proposed in the present work, four different configurations are assumed for the corrugated 

pipe, involving grooves height and length. Figure 3 shows the representative dimensions of the corrugated pipe, and 
their values are reported in Tab. 1 for the four configurations considered, where a  is the grooves spacing, b  is the 
groove length, c  is the groove height, s  is the pitch between two consecutive grooves and D  is the pipe inner 
diameter, which is the same for each configuration considered, 0.1D =  m. 
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Figure 3. Main dimensions of the corrugated pipe. 
 

Table 1. Numerical values of the main dimensions shown in Fig. 3, for the four geometric configurations assumed. 
 

Configuration /a D  /b D  /c D  /s D  
1 0.11 0.015 0.03 0.125 
2 0.11 0.03 0.03 0.14 
3 0.11 0.04 0.03 0.15 
4 0.11 0.04 0.04 0.15 

 
The values assumed in Tab. 1 are chosen in this manner for the investigation of two effects: from configuration 1 to 

3, the groove length b  is increased, with the groove height c  kept constant, in order to verify the influence of the 
groove length on the friction factor; from configuration 3 to 4, the groove length is kept constant instead, and the groove 
height c  is increased, revealing any influence of variations in the groove height on the friction factor. Also, 
configuration 4 matches, in appropriate scale, with that used by Morales et al. (2007), for further validation. 

From Fig. 3, it can be seen that the corrugated pipe considered is symmetric, and then it isn’t necessary to solve the 
problem along the whole tangential direction. Thus, only a “sliced” tangential portion of the domain is needed 
(intrinsically indicating that the flow is essentially two-dimensional), as shown in Fig. 4. Furthermore, the periodic fully 
developed flow assumption allows the problem to be solved for a single module, similarly as the one marked by dashed 
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lines in Fig. 2. However, in order to avoid any possible numerical errors by not considering the influence of one groove 
in another subsequent one, a periodic geometric configuration consisting of two grooves (instead of one) is considered, 
as shown in Fig. 4. Note that the numerical domain remains still periodic (all the mathematical description of the sub-
section 2.1 are then still valid), but the numerical domain becomes presumably more reliable for turbulent flows than 
that one with just one groove. 

 
2.3. Numerical considerations 

 
Governing equations (1) are discretized using the Finite Volume Method (Patankar, 1980), and the Hybrid scheme is 

used to interpolate of the convective terms. The SIMPLEST algorithm, which stands for Semi-Implict Method for 
Pressure-Linked Equations Shortened (Spalding, 1994), is used to the pressure-velocity coupling. The set of algebraic 
equations are solved through the commercial software PHOENICS CFD (Spalding, 1994).  

A non-uniform orthogonal grid is used for the cylindrical-polar coordinate system, with grid refinement near the 
wall. The adequate number of control volumes in each sub-region of the pipe was obtained through a mesh test, in 
which the adequate number of control volumes is determined in order to represent the physical problem without 
increasing excessively in the computational time (in fact, it was found that the friction factor has a relatively low 
dependence on the mesh, varying less than 1% for grids finer than a 75 60×  mesh). Figure 5 shows a schematic 
representation of the non-uniform grid distribution inside the groove, where the mesh configuration is more important. 
Note that the grid is more refined near the cavity corners, where is it expected that the more representative gradients 
will take place. 
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Figure 4. Schematic approach with two grooves for the numerical periodic domain of the corrugated pipe. 
 

 
 

Figure 5. Grid distribution inside the corrugation cavity. 
 

3. NUMERICAL SIMULATIONS – RESULTS AND DISCUSSIONS 
 

This section brings the numerical results obtained for the four geometric configurations proposed, as well as relevant 
physical interpretations related to the observed turbulent flow pattern. The fluid properties assumed are density 

31000 kg/mρ =  and cinematic viscosity 6 21 10  m /sν −= × , and the Reynolds numbers 6000, 10000, 20000, 30000, 
40000 and 50000 are simulated. 
3.1. Flow pattern 

 
In general, works involving turbulent flow over surfaces with discrete roughness seek, directly or not, to associate 

measured changes in the flow’s parameters with the flow’s physical pattern observed. The work of Djenidi et al. (1994) 



0.05 m/s

is an example of this fact, as discussed in section 1, where the aim was investigate the interaction between the vortexes 
inside the grooves and the outer flow as a mechanism capable of changing turbulent properties. 

Figure 6 shows examples of the general flow patterns of the confined vortex inside the groove observed in the 
present work, detailed here for Reynolds numbers 10000, Fig. 6-(a), and 50000, Fig. 6-(b). It can be observed, through 
Figs. 6-(a) and 6-(b), that the recirculation pattern inside the groove is influenced significantly by the Reynolds number. 
Note that in Fig. 6-(a), where the Reynolds number is somewhat low, the confined vortex is stable, and the interface 
region between the groove and the outer flow shows predominantly axial velocity components. On the other hand, Fig. 
6-(b) shows that for higher Reynolds numbers the vortex center is slightly dislocated in comparison with the previous 
one. This can be assigned by an increase in the vortex intensity inside the groove, since flow’s inertia for Re = 50000 is 
obviously higher than Re = 10000. As a consequence of this effect, the confined vortex is much less stable than the one 
observed for Re = 10000, and the intensified recirculation inside the groove causes the fluid to try to leave the cavity 
right to the outer flow, as a perturbation mechanism. In other words, the average effect of this pattern can be recognized 
as an enhancement in momentum transfer between the grooves and the outer flow associated with the increase in the 
Reynolds number. Not visually shown here, but also expected, the increase of the interface length, i.e. the increase of 
groove length, would cause this effect to be even more significant. 

 

0.01 m/s

 
                                    (a)                                                                                          (b) 
  

Figure 6. Flow pattern inside the grooves. (a) Re = 10000, (b) Re = 50000. 
 
3.2. Results 
 

Figure 7 shows comparisons involving the numerical friction factors obtained in the present work, where Fig. 7-(a) 
presents values from all four geometrical configurations listed in Tab. 1, for all six Reynolds numbers proposed, 6000, 
10000, 20000, 30000, 40000 and 50000, and Fig. 7-(b) shows a comparison between the numerical friction factors 
obtained for configuration 4 in this work and experimental data of Morales et al. (2007). Blasius’ smooth pipe 
correlation ( 0.25.smoothf 0 316 Re−= ⋅ ) is plotted as well. Since the simulated Reynolds numbers range is somewhat short 
(6000-50000), a logarithmic scale would not be much useful, and variations can be more clearly seen in a standard 
conventional scale as shown. 

From Fig. 7-(a), one can observe that, for a given Reynolds number, the friction factor increases through 
configurations 1 to 3, indicating that the friction factor increases with the increase of the groove length. Furthermore, 
the deviations between the numerical values for configurations 1 to 3 are more significant for higher Reynolds numbers, 
which can be clearly seen through Fig. 7-(a). As discussed for Fig. 6, when the Reynolds number increases, the 
momentum transfer between the groove and the outer flow is also increased, and this effect is amplified when the 
interface increases. Thus, it could be expected that deviations would tend to be bigger both for higher Reynolds 
numbers and for higher groove lengths, as can be seen in Fig. 7-(a). Note also from Fig. 7-(a) that, while increasing the 
groove length (made through configurations 1 to 2 and 2 to 3) induced notable increases on the friction factor, 
increasing the groove height (made through configurations 3 to 4) doesn’t causes relevant variations on the friction 
factor. In fact, both 3 and 4 configurations consist of “d-type” roughness (according to many works, as Vijiapurapu & 
Cui [2007], “d-type” grooves are considered, in fact, cavities with the ratio between height and length lower than 4, i.e. 
not necessarily strictly square grooves), and as already discussed in the previous paragraph the phenomena involved 
with the variations here observed appear to be essentially related to the groove length and the Reynolds number. 

From Fig. 7-(b), note that, especially for Reynolds numbers over 20000, the numerical results obtained show good 
agreement with experimental data. Significant deviations are observed, however, for Reynolds numbers lower than 
20000, but Morales et al. (2007) reported some possible inaccuracies in this low range, due to an equipment limiting 
range for low mass flow rates. In fact, numerical results tend to the smooth pipe correlation for low Reynolds numbers, 
which is in agreement with one of the classic conclusions of Nikuradse (1933) work, who stated that for low Reynolds 
numbers the friction factor is basically a function of the Reynolds number, only. 
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Figure 7. Numerical friction factors obtained, (a) for all geometric configurations and Reynolds numbers proposed, (b) 

for configuration 4 in comparison with experimental data (Morales et al., 2007) and with smooth pipe Blasius’ 
correlation. 

 
According to Djenidi et al. (1994), a direct consequence of the momentum transfer enhancement discussed for Figs. 

6 and 7-(a) is the increase of the Reynolds stress near the wall, which indirectly increases the friction coefficient, and 
hence also the global friction factor, a phenomenon well reflected by the results of Fig. 7-(a). In order to illustrate this 
phenomenon, Fig. 8 shows the Reynolds stress, ' '−v w  (where 'v  and 'w  are the radial and axial velocity fluctuations, 
respectively), normalized by the friction velocity proposed by Silberman (1980), * / 4V pD Lρ= Δ  , for Reynolds 
30000 (as an example) for all configurations, Fig. 8-(a), and for configuration 3 (also as an example) for all Reynolds 
numbers simulated, Fig. 8-(b).  
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Figure 8. Dimensionless Reynolds shear stress near the wall. (a) Re 30000, for configurations 1 to 4 and smooth pipe; 
(b) Configuration 4, for Reynolds numbers from 6000 to 50000. Lines are fitting to the calculated data. 

 
It can be clearly seen, through Fig. 8-(a), that when the groove length increases (which happens through configurations 
1 to 3), the average Reynolds stress near the wall also increases. It is then expected that the global friction factor will 
increase if the groove length increases, and the increased Reynolds stress observed confirms this trend (since velocity 
fluctuations 'v  and 'w  tends to be intensified likewise, as a perturbation mechanism near the wall). Although 
exemplified just for Re = 30000, for all other Reynolds numbers this characteristic were observed. Figure 8-(b) shows 
that the Reynolds stress is also increased when the recirculation intensity is raised, which is provided here by increasing 
the Reynolds number, corroborating with the physical visualization in Fig. 6. Moreover, Figure 8-(a) numerically 
confirms, as observed in Fig. 7-(a), that increasing the groove height doesn’t causes significant variations on the friction 



factor if the groove shape still remains as a “d-type” cavity, since Reynolds stress plots are almost identical for 
configurations 3 and 4. 

 
3. CONCLUSIONS 
 

The present paper numerically investigated the influence of corrugated surfaces on the friction factor in circular 
cross section ducts. Four geometric configurations were assumed, involving variations on grooves length and height, 
and a numerical analysis was carried on for Reynolds numbers from 6000 to 50000. In general, it was found that the 
friction factor increases for a given Reynolds when the grooves length increases, and the friction factor also increases 
for a given cavity shape when the Reynolds number increases. This trend is a result of a momentum transfer 
enhancement between the confined recirculation in the groove and the outer flow, and was confirmed by a numerical 
analysis of the Reynolds shear stress near the wall, for which could be observed that velocity fluctuations are intensified 
near the wall when the momentum transfer between the grove and the outer flow increases, indirectly providing a 
increase in the friction factor, as discussed. The numerical results shows good agreement with experimental data for 
Reynolds numbers over 20000, but some deviations were found for low Reynolds numbers, due to an equipment 
limiting range for low mass flow rates reported by Morales et al. (2007). Aside of that, numerical results agree with the 
conclusion of Nikuradse (1933) of roughness non-dependence for low Reynolds numbers. 
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