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Abstract. This paper presents the development of a numerical method for the simulation of incompressible fluid flow
over a three-dimensional domain, where the Navier-Stokes equations were written under an Eulerian formulation and
discretized by the Finite Elements Method. The semi-Lagrangian method was used to discretize the convective terms
and the components of velocity and pressure were decoupled through the use of a method based on LU decomposition.
The three-dimensional domain was represented by a mesh, represented by a topological data structure, formed with cells
forming linear wedge elements. Experiments solving the well known problem of backward-step were made in order to
analyse the consistency of the proposed method on theoretical basis. The results showed a good approximation and
pointed out the stability of the proposed method.
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1. INTRODUCTION

In the study of incompressible fluid flows, the mathematical modeling of the conservation laws is well stated by
Navier–Stokes equations and the mass conservation equations. The numerical simulation of fluid flow over many ap-
plications requires the use of numerical techniques of high efficiency, demanding high computational power. The need
for numerical simulation in CFD is justified by the lack of analytical solutions of the Navier-Stokes equations for most
practical cases.

A numerical simulation can be seen as a relation between theoretical and practical results, being a new solution to
certain problems, attracting attention of many researchers. In order to apply the numerical solution to a problem, mathe-
matical expressions must be derived. Such expressions are usually defined from the application of physical principles,
described by laws and principles suitable to the phenomenon, such as mass conservation, energy and movement (An-
derson, 1995)(Batchelor, 1970)(Fortuna, 2000) (Maliska, 1995)(Panton, 1984)(Peyret and Taylor, 1983)(Flecther, 1992)
(Ferziger and Períc, 1999).

In this paper, a numerical model is proposed for the solution of three dimensional Navier–Stokes equations (momentum
and mass conservation equations). The finite elements method (Zienkiewicz, 2000)(Becker et al., 1981)(Zienkiewicz and
Cheung, 1965)(Chung, 1978) is used for the discretization of the proposed problem, where the Galerkin method is used
for the spatial discretization and the semi-lagrangean method is used for the discretization of the material derivative. The
latter derivative includes the convective term, responsible for the non linearity of the problem.

2. FORMULATION

The governing equations are the non-dimensional mass and momentum equations in conservative form where in three-
dimensional coordinates can be written as

D(ρu)
Dt

= −∇p+
1
Re
∇ · [µ(∇u +∇uT )] +

1
Fr2

ρg (1)

and the equation of continuity

∇ · u = 0. (2)

where Re = (LU)/ν and Fr = U/(
√
gL) are the non-dimensional Reynolds and Froude numbers, respectively. Hence,

L and U are the length and velocity scales, respectively, ν is the kinematic viscosity, and g denotes the gravitational
constant, g = |g| = |(gx, gy, gz)|. Furthermore, u = (u, v, w)t is the velocity vector while p is the non-dimensional
pressure.
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3. DISCRETIZATION

The three-dimensional domain is represented by a mesh, manipulated by a topologic data structure, formed with cells
defining linear wedge elements. The shape functions interpolating the discrete approximations are assumed to be linear,
and each node of the mesh has four degrees of freedom for the velocity and pressure properties.

3.1 Variational Formulation

Considering the Navier–Stokes equations for incompressible flows, written in the eulerian formulation expressed in
the non-dimensional form as

D(ρu)
Dt

+∇p− 1
Re
∇ ·
[
µ
(
∇u +∇uT

)]
− 1
Fr2

ρg = 0 (3)

∇ · u = 0 (4)

valid on a domain Ω ⊂ Rm under the boundary conditions

u = uΓ, em Γ1 (5)

ut = 0 e σnn = 0, em Γ2. (6)

Consider the subspace

V = H1(Ω)m =
{
v = (v1, . . . , vm) : vi ∈ H1(Ω),∀i = 1, . . . ,m

}
(7)

where H1(Ω) is the Sobolev space given by

H1(Ω) =
{
v ∈ L2(Ω) :

∂v

∂xi
∈ L2(Ω), i = 1, . . . ,m

}
(8)

with L2(Ω) being a infinity dimension space defined as

L2(Ω) =
{
v : Ω → R,

∫
Ω

v2dΩ <∞
}

(9)

And V = H1(Ω)m is the cartesian product of m spaces H1(Ω).
Defining

VuΓ = v ∈ V : v = uΓ in Γ1, V0 = v ∈ V : v = 0 in Γ1 (10)

PpΓ = q ∈ L2(Ω) : q = pΓ in Γ2 (11)

the weak formulation of the problem can be written as: find u(x, t) ∈ VuΓ e p(x, t) ∈ PpΓ such that

∫
Ω

D(ρu)
Dt

·wdΩ−
∫

Ω

∇p ·wdΩ−
∫

Ω

1
Re
∇ ·
[
µ
(
∇u +∇uT

)]
: wdΩ−

∫
Ω

1
Fr2

ρg ·wdΩ = 0.

∫
Ω

(∇ · u) qdΩ = 0 (12)

for all w ∈ V0 e q ∈ PpΓ.
The discretization of (12) is made by using linear shape functions and Galerkin weighting functions. Integrating over

the wedge elements results in an ODE system, which is solved using the projection method described as follows. The time
derivatives are integrated by an implicit scheme. As in the Lagrangian formulation the non-linear terms do not appear, the
matrices are defined symmetric positive and thus the conjugate gradient method can be applied to solve the linear systems.
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3.2 Galerkin’s Method

After the variational formulation of the governing equations, the approximation phase takes place using the Galerkin’s
method. Consider the governing equations in its non-dimensional and variational form (Eq. 12) and letting NV be the
number of velocity points, NP the number of pressure points and NE the number of finite elements of the mesh that
discretizes the domain Ω. The Galerkin’s method consists on replacing the following terms on Eq. (12):

u(x, t) ≈
NV∑
n=1

ψn(x)un(t), v(x, t) ≈
NV∑
n=1

ψn(x)vn(t) (13)

w(x, t) ≈
NV∑
n=1

ψn(x)wn(t), p(x, t) ≈
NP∑
n=1

Pn(x)pn(t) (14)

that are semi-continuous approximations, that is, continuous in time (t) and discrete in space (x). Here, ψn(x) represent
the interpolation functions used for the velocity and Pn(x) the interpolating functions for the pressure.

The momentum equation is normally evaluated in all the free nodes of velocity, and then the weight functions wx, wy

and wz are replaced by interpolation functions ψm = ψm(x), m = 1, ..., NV . Applying this procedure for the directions
x, y and z, and restricting the nodal interpolation functions to each element e, in the direction x, we have

∑
e

∫
Ωe

∑
i,j∈e

ρeDuj

Dt
ψe

iψ
e
jdΩ−

∑
e

∫
Ωe

∑
i,k∈e

∂ψe
i

∂x
P e

kpkdΩ−
1
Re

∑
e

∫
Ωe

∑
i,j∈e

µe

(
∂ψe

i

∂x

∂ψe
j

∂x
uj +

∂ψe
i

∂y

∂ψe
j

∂y
uj+

∂ψe
i

∂z

∂ψe
j

∂z
uj +

∂ψe
i

∂x

∂ψe
j

∂x
uj +

∂ψe
i

∂y

∂ψe
j

∂x
vj +

∂ψe
i

∂z

∂ψe
j

∂x
wj

)
dΩ− 1

Fr2

∑
e

∫
Ωe

∑
i,j∈e

ρeψe
iψ

e
jgx,jdΩ = 0 (15)

In the direction y,

∑
e

∫
Ωe

∑
i,j∈e

ρeDvj

Dt
ψe

iψ
e
jdΩ−

∑
e

∫
Ωe

∑
i,k∈e

∂ψe
i

∂y
P e

kpkdΩ−
1
Re

∑
e

∫
Ωe

∑
i,j∈e

µe

(
∂ψe

i

∂x

∂ψe
j

∂x
vj +

∂ψe
i

∂y

∂ψe
j

∂y
vj+

∂ψe
i

∂z

∂ψe
j

∂z
vj +

∂ψe
i

∂x

∂ψe
j

∂y
uj +

∂ψe
i

∂y

∂ψe
j

∂y
vj +

∂ψe
i

∂z

∂ψe
j

∂y
wj

)
dΩ− 1

Fr2

∑
e

∫
Ωe

∑
i,j∈e

ρeψe
iψ

e
jgy,jdΩ = 0 (16)

In the direction z,

∑
e

∫
Ωe

∑
i,j∈e

ρeDwj

Dt
ψe

iψ
e
jdΩ−

∑
e

∫
Ωe

∑
i,k∈e

∂ψe
i

∂z
P e

kpkdΩ−
1
Re

∑
e

∫
Ωe

∑
i,j∈e

µe

(
∂ψe

i

∂x

∂ψe
j

∂x
wj +

∂ψe
i

∂y

∂ψe
j

∂y
wj+

∂ψe
i

∂z

∂ψe
j

∂z
wj +

∂ψe
i

∂x

∂ψe
j

∂z
uj +

∂ψe
i

∂y

∂ψe
j

∂z
vj +

∂ψe
i

∂z

∂ψe
j

∂z
wj

)
dΩ− 1

Fr2

∑
e

∫
Ωe

∑
i,j∈e

ρeψe
iψ

e
jgz,jdΩ = 0 (17)

The equation of continuity Eq. (2) is evaluated on the free nodes of pressure, then weight function q is approximated
by the interpolation functions associated with the pressure Pr(x), resulting

∑
e

∫
Ωe

∑
n

(
∂ψn

∂x
un +

∂ψn

∂y
vn +

∂ψn

∂z
wn

)
PrdΩ = 0 (18)

for r = 1, . . . , NP . Restricting the interpolation functions to each element e, we have

∑
e

∫
Ωe

∑
j,k∈e

(
∂ψe

j

∂x
uj +

∂ψe
j

∂y
vj +

∂ψe
j

∂z
wj

)
P e

kdΩ = 0 (19)
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The Eq. (15), (16) e (17) can be represented in an ordinary differential equations system form

Mρ,x
Du

Dt
− 1
Re

((2Kxx + Kyy + Kzz)u + Kxyv + Kxzw)−Gxp−
1
Fr2

Mρ,xgx = 0

Mρ,y
Dv

Dt
− 1
Re

(Kyxu + (Kxx + 2Kyy + Kzz)v + Kyzw)−Gyp−
1
Fr2

Mρ,ygy = 0

Mρ,z
Dw

Dt
− 1
Re

(Kzxu + Kzyv + (Kxx + Kyy + 2Kzz)w+)−Gzp−
1
Fr2

Mρ,zgz = 0

Dxu + Dyv + Dzw = 0 (20)

where u = [u1, . . . , uNV ]T , v = [v1, . . . , vNV ]T , w = [w1, . . . , wNV ]T p = [p1, . . . , pNP ]T , gx = [gx
1 , . . . , g

x
NV ]T ,

gy = [gy
1 , . . . , g

y
NV ]T , gz = [gz

1 , . . . , g
z
NV ]T are the vectors of the nodal values for the velocity and pressure variables,

and the gravity forces.
The dimensions of the matrices of the equations system (20) are NV ×NP for Gx, Gy and Gz , NP ×NV for Dx,

Dy e Dz and NV ×NV for all others.

3.3 Semi-Lagrangean Method

This method was introduced in the beginning of the 80’s by (Robert, 1981) and (Pironneau, 1982), and the basic idea
is based on the discretization of the solution of the Lagrangean derivative in time instead of the eulerian derivative. As an
example, one can consider a Semi-Lagrangean scheme of any equation of any type convection-diffusion.

The material derivative of a scalar u is given in the three-dimensional space as

Du

Dt
=
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
(21)

The basic idea of the Semi-Lagrangean method is to follow a fluid particle during its path through the mesh during
the flow. The method is explicit, where is necessary the information of the values of the components of velocity in
the current time. Therefore, the method approximate those values in the previous step time on the path. Basically, the
Semi-Lagrangean formulation is given by

Du

Dt
(p) =

un+1
p − un

p∗

∆t
(22)

where

p∗ = p−∆tup (23)

where p is any point in the mesh and p∗ defines the point p in the previous step time. The calculus of u in the point p∗ is
made by a linear interpolation between the neighbors points. This interpolations is dependent from where the point p∗ is
located inside the domain, such as: over an edge, over a vertex, over a face of a wedge element, inside a wedge element
or outside the domain.

Then, the equations system (20) can be written as follows.

Mρ,x

(
un+1

p − un
p∗

∆t

)
− 1
Re

((2Kxx + Kyy + Kzz)u + Kxyv + Kxzw)−Gxp−
1
Fr2

Mρ,xgx = 0

Mρ,y

(
vn+1

p − vn
p∗

∆t

)
− 1
Re

(Kyxu + (Kxx + 2Kyy + Kzz)v + Kyzw)−Gyp−
1
Fr2

Mρ,ygy = 0

Mρ,z

(
wn+1

p − wn
p∗

∆t

)
− 1
Re

(Kzxu + Kzyv + (Kxx + Kyy + 2Kzz)w+)−Gzp−
1
Fr2

Mρ,zgz = 0

Dxu + Dyv + Dzw = 0 (24)
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4. NUMERICAL METHOD

The numerical procedure implemented to solve the conservation equations is based on the Projection method, initially
proposed by (Chorin, 1968), and formalized by (Gresho, 1990)(Gresho and Sani, 1987). Thus, instead of solving one
large system, we solve two smaller decoupled systems of equations, reducing the time of computation.

The Projection method based on LU decomposition is obtained though the fatoration in blocks of the resulting linear
system. This suggests that the split of the velocity and pressure is made after the discretization in space and in time of the
governing equations. Consider the discretized equations in time and space as follows

Mρ

(
un+1 − un

∗
∆t

)
− 1
Re

Kun+1 −Gpn+1 − 1
Fr2

Mρg = 0 (25)

Dun+1 = 0 (26)

The Eq.(25) together with Eq.(26) compose an equation system that can be represented in the following way

[
B −∆tG
D 0

] [
un+1

pn+1

]
=
[

rn

0

]
+
[

bc1

bc2

]
(27)

The matrix B is given by

B = Mρ −
∆t
Re

K (28)

The right side of the equations system (27) represents the variables known in time n, added the boundary conditions,
that are the contributions of the known values of velocity and pressure.

rn = −∆t
(
− 1
Fr2

Mρg
)

+ Mρun
∗ (29)

The method consists on decomposing the equations system (27) though a block fatoration. The work of (Lee et al.,
2001) presented several ways of factoring such type of matrix, where each different factoring results on a new family of
methods. By using a LU canonical block factoring, we obtain the following system

[
B 0
D ∆tDB−1G

] [
I −∆tB−1G
0 I

] [
un+1

pn+1

]
=
[

rn

0

]
+
[

bc1

bc2

]
(30)

The system as given in (30), if solved, results on the method known as Uzawa method (Chang et all., 2002). However,
this method have an high computational cost, because of the need of inversion of the matrix B at each iteration. In this
case, we used a process of approximations called Lumping for the inverse of the matrix B. The new matrix is a diagonal
matrix defined as the sum of the values of each line from the original matrix, storing the sum in the position of the element
on the diagonal. Therefore, we have

Bũ = rn + bc1 (31)

∆tDM−1
ρ Gpn+1 = −Dũ + bc2 (32)

un+1 = ũ + ∆tM−1
ρ Gpn+1 (33)

A procedure for the solution of the equations is given in the following order:

• Evaluate ũ from Eq. (31);

• Evaluate pn+1 from Eq. (32);

• Evaluate the final velocity un+1 using Eq. (33);

• Update the time step and continue until the final time or convergence are reached.

After update the components of the final velocity un+1 and vn+1, is necessary to update the component of the velocity
w by using the equation of continuity, guaranteeing the condition of incompressibility.
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5. NUMERICAL RESULTS

The method was validated for the case of stationary incompressible flow, producing nodal values close to the exact
values. A solution that can be compared with the resulting solution of the simulations is the exact solution of the Poisson
equation. The solution matches the corresponding velocity component in direction x of a stationary and developed flow
over a square open duct with height H = L

2 , i.e., the half of width a = L, considering that the surface is a symmetry line.
The exact solution is given by

u(y, z) =

(
1− y2

)
2

− 16
π3

∞∑
k=1,k odd

{
sin (kπ (1 + y) /2)

k3sinh (kπ)
× (sinh (kπ (1 + z) /2) + sinh (kπ (1− z) /2))

}
(34)

A square domain LxL for the surface, where L = 2 m was defined. In this case, no-slip conditions were imposed on
the wall of the domain for the velocity components u, v and w. The pressure has zero value on the outflow of the duct.
The velocity component in direction z has zero value in the upper and lower levels of the domain. The condition for fully
developed flow defined at the inflow of the duct is given by the Eq. (34). The geometry of the domain is presented in the
Figure 1(a), which shows the dimensions of the sides of the duct and the inflow of fluid.

When the stationary state is achieved, the values of the components of velocities along the duct are the same that those
defined in the inflow of the duct. Then, one can compare the numerical results with the exact solution given by the Eq.
(34). The model for this flow is detailed as follow. Dimension of domain: 2.0 m x 2.0 m x 1.0 m; Width of inflow: 2.0
m; Viscosity: 1.00 Ns/m2; Density 1.0 kg/m3; Mesh 1: 15x15x6 points, total of elements: 1960; Mesh 2: 21x21x6
points, total of elements: 4000, both equally distributed into five layers of elements, and Reynolds number: 10;

The Figure 1(b) shows the numerical result obtained by the simulation. The considered region when comparing the
numerical result with the exact solution for this case is the outflow of the duct. From the figure, it can be seen that the
more refined the mesh is, the more accurate the method is.

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-1 -0.5  0  0.5  1

mesh 21x21
mesh 15x15

Exact Solution

 y

U

(b)

Figure 1. a) Domain geometry. b) Comparison of obtained results with exact solution.

The problem of backward-step was used to illustrate the features of the developed method. This case presents a high
complexity factor, because of the developing of the boundary layer and the cyclical flow zone.

The geometry of the problem is shown in Figure 2(a). The numerical simulation was made by using as initial conditions
u = 1.0 m/s, v = 0 m/s and w = 0 m/s. In the simulation, a total of 12400 wedge elements were used, equally
distributed into five layers of elements. The results were obtained in the second layer of the domain and at the outflow of
the duct.

The physical parameters and the flow features used are detailed as follow. Dimension of the domain: 3.0m x 1.0m x
1.0 m; Width of inflow: 0.5 m; Viscosity : 1.00 Ns/m2; Density : 1.0 kg/m3; Scale: L = 1.0 m and H = 1.0 m and
Reynolds number : 10, 100 e 1000.

In this case were applied no-slip conditions on the walls of the domain for the velocity components u,v and w. This
means that the values of velocities are zero and the boundary condition for pressure is of Neumann type. The pressure
values are zero at the end of the duct.

Figure 2(b) shows one layer example of the mesh formed by wedge elements, indicating the first wedge element. In
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the figure, the dots indicate the existence of other elements to form the entire mesh. Each layer can have different height
size but the same number of elements among others.

(a) (b)

Figure 2. a) Geometry e boundary conditions. b) One layer example of the mesh formed by wedges.

Figure 3 shows a graph in log scale which shows the number of iterations and the residue obtained from the conjugate
gradient method used on the solution of the linear equation systems resulted from the discretization of Navier–Stokes
equations. The number of iterations needed for the conjugate gradient residue became close enough to zero indicates the
velocity that the method reaches a stationary state.

The results showed in Figures 4, 5 and 6 represent data extracted in three different stages during the same simulation.
The first column represents the first stage, where data were extracted after two iterations of the method. The second
column represents the intermediate stage, where data were extracted after twenty iterations. The third column represents
the last stage, where data were extracted when the simulation reaches a stationery state.

In the simulation showed by Figure 4, the Reynolds number is considered low Re = 10. The viscous terms of Navier-
Stokes equations have more influence over the convective terms on the fluid flow. In this case the flow expand right after
the obstacle. The boundary layer of the velocity component in direction x has low gradient and then it becomes thick, as
can be seen in the figure.

In the simulations showed in Figures 5 e 6, we can see a fluid flow with low viscosity. The high value of Reynolds
number reduces the influence of the viscous term and we can notice negative values in the component of direction x of the
velocity, where the step is located. This behavior indicates the formation of recycling on the flow as expected. It is also
verified that depending of the Reynolds number used, the width of the recycling region raises. This fact can be observed
in the Figure 8 which shows the fluid flow vector field for the three cases simulated.

Figure 7 shows the simulation of the velocity component in direction x, containing all the domain levels. We can
observe the behavior of the fluid flow at the inflow of the model under different Reynolds number.

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 0  5  10  15  20  25  30  35

Iterations

Re=10
Re=100

Re=1000

Figure 3. Graph in log scale of the residue of the conjugate gradient method over iterations varying the Reynolds number.
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Figure 4. Simulation using Re = 10, a) evolution of the velocity component in direction x, b) y, c) z and d) pressure

Figure 5. Simulation using Re = 100, a) evolution of the velocity component in direction x, b) y, c) z and d) pressure
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Figure 6. Simulation using Re = 1000, a) evolution of the velocity component in direction x, b) y, c) z and d) pressure

(a) (b) (c)

Figure 7. Numerical simulations of the fluid flow in the backward-step in a point of view at the inflow of the duct, velocity
component fild in direction x a) Re = 10, b) Re = 100 e c) Re = 1000.

(a) (b)

(c)

Figure 8. Vector fields of fluid flow, (a) Re = 10, (b) Re = 100 and (c) Re = 1000
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6. CONCLUSION

The goal of this work was the mathematical modeling and development of a method for the simulation of fluid flows
in three-dimensional domains. The finite elements method was used to discretize the equations. The Projection method
based on LU decomposition was used to extract the pressure component, and the using of Lumped matrices reduced the
complexity of the algorithms, where the pressure gradient were calculated independently at each iteration. Then, the
velocity value were corrected by the continuity equation, keeping the divergence field null. The solution of the linear
systems was obtained by using the conjugate gradient method.

Future works about validation of the 3D simulation involve comparing the achieved results to real measurements
obtained in controlled experiments and seeking similar works in this field that complement the analysis of the simulation
itself.
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