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Abstract. In this work, two new high order upwind techniques for adivecterm discretizations are presented. The
schemes are tested by solving the 1D inviscid Burgers eguaid 2D incompressible Navier-Stokes equations. Two
flows are simulated, namely: (i) a backward facing step; anda(turbulent free jet impinging onto a rigid wall. The
numerical results are compared with analytical and experital data.
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1. INTRODUCTION

The numerical solution of convection dominated PDE has lbeerof the most challenging problem in CFD research
for the past three decades. And the success of the numeirnimalason of these types of problems depends on the
upwinding strategy for discretization of advective teriimsgeneral, non linear). In the specialized literatureretexists
a variety of schemes for approximating convection termgnbme of them has shown to be completely robust. In this
context, the objective of this work is to present the develept and application of two new bounded upwind schemes
called ALUS (Adaptative Linear Upwind Scheme) (Queiroz &mdreira, 2008) and TOPUS (Third-Order Polynomial
Upwind Scheme) (Queiroz et al., 2008a; Queiroz et al., 2p@@bnumerical solution of fluid dynamic problems. The
derivation of these schemes is based on NVD (NormalizedalWdgiDiagram) restrictions of Leonard (1988), and the
TVD (Total Variation Diminishing) constraints of Harten983). Thus, they possess the boundedness property, iye, the
satisfy the CBC (Convection-Boundedness Criterion) of@khsind Lau (1988).

The performance of the ALUS and TOPUS schemes is investigsteising the 1D inviscid Burger equation and the
2D incompressible flows. For numerical simulation of flowss full Navier-Stokes equations are solved by using the
finite difference methodology on a staggered grid systerd,the numerical procedure is an adaptation of the explicit
SMAC (Simplified Marker-And-Cell) methodology of AmsdendaHarlow (1970) for calculating free surface fluid flows
at high Reynolds numbers. The calculations are performexdyuke 2D version of the Freeflow simulation system of
Castelo et al. (2000). Numerical results compared with Wwabw analytical and experimental data confirm the ability of
the two new schemes.

The organization of this work is as follows. In Section 2sitlescribed the basic equations that model the flows and the
numerical method. In Section 3, the mathematical formaitetif the ALUS and TOPUS schemes is outlined. In Section
4, 1D test case and 2D numerical examples are performeddardtification/validation of these modern techniques for
advective term discretizations. Conclusions are predeént8ection 5.

2. BASIC EQUATIONS AND THE NUMERICAL METHOD
2.1 1D Inviscid Burgers equation

The inviscid Burgers equation is given by

2.2 Full Navier-Stokes equations

The general mathematical equations that model transiemtdyéan incompressible flows are Navier-Stokes and mass
conservation equations, respectively, that is

ou 1 _, 1
E+V-(uu)_—Vp+§V u+ =59 (2)
V-u=0, 3)

where the velocity is the vector consisting of the velocity components, theguep is a scalar, angd is the gravitational
acceleration|g| = 9, 81 m/s?). The non-dimensional parametdts = (LU)/v andFr = U/(,/L|g|) are, respectively,
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the Reynolds and Froude numbers, in whicls length scale and/ is characteristic velocityr is kinematic viscosity
coefficient (constant) of the fluid. Together with approfgipoundary and initial conditions, the Egs. (2) and (3) are
solved by using the finite difference method implementethé2D version of the Freeflow code of Castelo et al. (2000).
This code uses an explicit version of the SMAC method origynaoposed by Amsden and Harlow (1970). The details
of the discretization procedure have been presented bgiFeat al. (2004, 2007).

2.3 Initial and boundary conditions

Equations (2) and (3) are coupled non-linear PDEs and afieisut, in principle, to solve for the unknowmisandp
when appropriate initial and boundary conditions are $getiFor initial conditions, a Dirichlet condition is useat fall
variables. There are four types of boundaries to be coreigdaamely: inlet, outlet, solid walls and free surfacestht
inlet section, the velocity is known. At the outlet sectibmmogeneous Neumann (fully developed flow) conditions are
specified for all variables. On the solid walls, it is assurtied the fluid adheres to (no slip) or slips at (free slip) thigls
surface. The appropriate free-surface boundary congitioa the vanishing of the normal and tangential stresseshyhi
in the absence of surface tension, are (see Ferreira el08l4(2007) for details)

n-T -n=0, (4)

wheren is the local unit normal vector, external to the free surfarelm is the local tangent vector to the free surface.
The viscous stress tensiiris given by

T = —pl +2uD, (6)
wherel is identity tensory is dynamic viscosity coefficient, aridl is tensor of deformations average

D=0.5(Vu+ (Vu)’). (7)
2.4 Numerical method

The PDEs (2) and (3) have been solved numerically by usingtdgggered grid finite difference methodology, pre-
sented by Tomé et al. (2000). An important factor in the chaitthe spatial differencing strategy, a topic of this study
is the order of accuracy. In the present study, the diffustoms have been approximated by second order central diffe-
rencing, while for the advection terms by the ALUS and TOPU&ses. Details of these schemes will be presented in
the next subsection. The Poisson equation (see Eq. (12pdsetized using the usual five-point Laplacian operatad, a
the associated symmetric linear system is solved by thaigatg-gradient method. The complete numerical algorithm i
summarized below.

When calculating the tilde velocity, it is employed an adaptive time stepping procedure to caeniie maximum
permissible time step.

In this work, the Eqgs. (2) and (3) are discretized in time bpgshe explicit Euler method, giving the system

1 1
(n+1) _ | ,(n) v (n) _ (n) = 724(n) )
u =u + ot { V (UU) Cp + Re Vau + 2 g } , (8)

V-u™ =0, (9)

wheredt is the time step. The solution procedure for solving Eqsa(®) (9) can be accomplished by means of the frac-
tional step procedures, first suggested by Chorin (1968gdprojection methods. The basic idea behind this apgroac
is to use the Eq. (8) to solve for an intermediate velocityfiethat is not required to be divergence-free, that is,

1 1
~ _ _(n) v (n) s 24 = o(n)
a=u +5t{ V- (uu) Vp + eV a+ 38 }, (10)

wherep = p(") is a tentative pressure. Then, using Helmholtz-Hodge th@@enaro, 2003), this intermediate velocity
vector field is projected to ensure mass balance and obtasdéegt fieldy, that is,

a=u" + V. (11)
By applying the divergence in Eqg. (11) and using Eq. (9), drtaio the following Poisson equation fgr
V) =V -1 (12)
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For the computational approach, it is supposed that, atengimet = ¢, the solenoidal-velocity fieldi(x, ¢o) is
known and suitable boundary conditions for the velocity pressure are given. The updated velocity field, ¢), at
t = to + Jt, is calculated by the following sequence of the steps:

STEP 1: Update the variables on the boundaries: the conditions letsinoutlets and rigid walls are discussed in
subsection 2.3 in the case 2D, the velocity field at the fuefase is explicitly computated using the following eqoas
1 ou ov ou  Ov

wheren = (n,, n,) is the local unit normal vector, external to the free surfacelm = (m,, m,) is the local tangent
vector to the free surface. The pressure field is expliciyjputed using the following equation

2 [Ou 5, Ov Ju Ov o

STEP 2: Calculate the auxiliary velocity field from Eq. (10);

STEP 3: Solve the Poisson Eq. (12) for potential function The appropriate boundary conditions for this equation
are homogeneous Dirichlet-type on the outlets and homagendeumann-type on the fixed boundaries and inlets;

STEP 4: Compute the velocity field from (11);

STEP 5: Compute the pressure. It can be shown that the pressureeis gy

i) = pix, 1) + L8, (15)

STEP 6: Update the positions of the marker particles. This stepli@gomoving the marker particles to their new
positions. These are virtual particles (without mass, nauor other properties), whose coordinates are stored and
updated at the end of each computational cycle by solvingttimary differential equatio = v by Euler's method.
This provides a discrete particle, convected in a Lagrangianner, with its new coordinates, allowing us to determine
whether or not it has moved into a new computational cell f dr has left the containment region through an outlet
boundary. And go back to th&TEP 1

3. NEW SCHEMES FOR CONVECTIVE TERMS DISCRETIZATION
3.1 Introduction to normalized variables

Let ¢(x, y) be the variation of one scalar in the normal direction tp face, as shown in Fig. 1. In this figur®,
(Downstreany, U (Upstrean) and R (Remote-Upstreappositions (see Ferreira et al., 2008) are determined wipect
the convecting velocity at thé interface (flow direction). In order to facilitate the ansilyof the functional relationship

flow direction f

R U D
O—O—1—0—0
2 01 0 i

Figure 1. Computational stencil.

linking ¢p, ¢y andeor, the original variables are transformed in normalizedalalgs (NV) of Leonard (1988) as

s O —9¢Rr
¢_¢D_¢R. (16)
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3.2 ALUS scheme

The ALUS scheme (Queiroz and Ferreira, 2008) is defined in 8lV a

20u, v € (0,Ad],
by =14 (1-058)dy +0.58, du € (Aa,1), €))
U, du ¢ (0,1),
where € [0,1] andgy = %. Although 3 € [0, 1] guarantees that the ALUS is convergent (see Fig. 2). In

general, it is suggested to reader to @se [0, 0.5] for flows with high Reynolds number (in order to ensure stbdf
the method). The adaptative variablgin Eq. (17) is the intersection ¢f — 0.53)¢y + 0.58 and2¢, whose result is

0.508
a = T~ —-- l
Aa= 1 +0.506 (18)
1k
08l
~ VD
Qb 06 TOPUS
f - ALUS
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net
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ou
Figure 2. Upwind schemes in the TVD region: (a) ALUS= 0.5, (b)TOPUSe& = 2.
In original variables, the ALUS scheme is given by
2¢U - ¢R7 QASU S (07 )‘a]7
dr=1 (1-058)by +0.586p v € (Ao, 1), (19)
v, ou ¢ (0.1).
3.3 TOPUS scheme
The TOPUS scheme (see Queiroz et al. (2008a) and Queiroz(208Bb)) is defined in NV as
; { adl + (=2a +1) ¢ + (22422) 6 + (=5H2) du,  dv € [0,1]; 20)
F=9 - -
(z)Uv (z)U ¢ [07 1]7

wherea € [—2, 2] ensures that the scheme satisfies the CBC criterion (bowsadieiibn). It is advisable to choose= 2,
because it ensures that the TOPUS belongs to the class o¥ihedhemes (see Fig. 2). In original variables, this scheme
can be rewritten as

b5 = { or + (6D — ¢r) [adl + (—2a + 1) ¢% + (22719) §2, + (=2520) ¢U} . du €[0,1];
(z)Uv QgU ¢ [07 1]3

For the spatial advection terms of Navier-Stokes equatitiesapplication of this scheme is as follow. For simplicity
only the discretization of the nonlinear termsircomponent of Eq. (2) will be presented. The discretizatibtihe other

(21)
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nonlinear term is made in a similar manner. In positioA- %,j) of the 2D mesh, this term can be approximated by the
following conservative scheme (in this example, fhiace corresponds to thie+ 1 in Fig. 1):

Uit1,jUit1,5 — UijUij

ox

i3,
Vitgj+rg%itsirs — Vit gi-5%it5.-3
oy

where the advection velocities. 1 ;, @ ;, 0;; 1 ;1 andv; 1 ;.

)

L are obtained by averaging.

For instance@i+%7j_ 1 IS approximate by

2
177_’_%/]_% ~ 05 (vi7j_% + vi-‘,—Lj—%) . (22)

The velocitiesu; ; andu;41,; are calculated (the other velocities follow similar progess) for example using the
TOPUS scheme by the conditions:

Uyl ;7 W3,
o Ifa;; >0andi, 1 ; = —2 27 then
“ 2 ?l,i+%‘1 “L*%,j
J— A4 —_— A3 A, . A, .
- w;_s ;+ (uH%J ui_%j) [2%—%,]' 3”1—%4’ +2u1_%7j} ;U1 € [0,1];
i1 g Ui 15 ¢ [071 )
U. , 1 —U., 3 .
_ N i+1 i+ 3
o Ifu;; <Oandi, 1, =2 ——=2= then
2’ it T % S

_ A4 _an3 - ] . ] .
i — Uips ;4 (U1 — Uiz ;) [2ui+%7j 3“¢+%,j +2ul+%7j} , Uy €[0,1];
Uit L Ujp L j ¢ [0,1];
U. , 1 .—U. 1 .
_ N i+5.d i—%.
o If tjy1 ;> OanduH%’, = M then

u, =,
J H—%,J i=5.3

[V

— . . A4 _— AB A. . A, . .
i — Ui—g 5t (Ui j — w1 ;) {2ui+%,j 3ui+%’j + 2ul+%’j} ;U1 €100,1;
/ Uit 5 ai+%,j ¢ [0,1];

_ . Yiy3 ;%185
o If Uit1,5 < OanduH%" =-—2= 2" then

T Ui T g
ety = { Uipg i+ (Uipg j — Uirs ;) {QQ?JF%J =307 5+ 2@”%4} » lipg € 10,1);
/ uiJr%,ja ﬁiJr%,j ¢ [07 1]
4. NUMERICAL EXPERIMENTS

4.1 1D Inviscid Burgers equation

In this study, it is investigated the inviscid Burgers edquatdefined by Eq. (1) with initial condition (see Ahmed
(2004)) defined as

0, r < —1;

u(0,t) =< 0.5, —-1l<z<0; (23)
0, x> 0.

The exact solution for this Riemann problem for. 4 is given by (see Ahmed (2004))
0, r < —1;
il l<ae <t -1
- t 2 )

Ut =3 05 t-o1<szi (24)

0, % < x.

In this test, it is considered a mesh sizedf= 200 computational cellsf = 0.0125), final timet = 2, and
x € [-1,1]. The numerical results obtained using the ALUS= 0.95 and TOPUS« = 2 schemes and the exact
solution are presented in Figs. 3 and 4, respectively. Onesea from these figures that the solutions obtained by the
two schemes are better when one uses time &tep 0.01625. Besides, these figures show a satisfactory concordance
between the numerical and analytical data.
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Figure 3. Comparison between numerical result by using ABd&exact solution(a) 6t = 0.01125; (b) §t = 0.01625.

(@) (b)

05 |-

-+ TOPUS
Exact

03 4 03

02 4 02

f L L ! d .
1.5 -1 0.5 o 05 1 15 -1 05 0 05 1

X X
Figure 4. Comparison between numerical result by using T®RH exact solutior(a) ¢ = 0.01125; (b) 6t = 0.01625.

4.2 2D Backward facing step

The geometry for this 2D problemis illustrated in Fig. 5. Hreeflow code run this problem at Reynolds number 400,
which was based on the following scaling parameters, namefximum velocityU,,,... = 1.0 m/s; and inlet diameter
L = 0.1 m. The data for the numerical experiment weté0 x 20 (¢, = J, = 0.1 m) computational cells; dimension
of domain 4.0 mx 0.2 m; and simulation time 100s. The experimental resultrofidly (1983) for the non-dimensional
reattachment (see Fig. 5) 8.72 was used for comparison. The numericaltsesiotained by the ALUS? = 0.95 and
TOPUS« = 2 schemes are, respectively, 8.40 and 8.30, which are in a ag@@&ment with the experimental result of
Armaly and other data of the literature.

_H\\
inflow —
¥ 5 - H\\
‘ _l_ :7\\
T TS
—rx, rigid boundary
s

Figure 5. Geometry of the backward facing step problem.
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(a) -0.118 0.041 0.193 0.357 0.516 0.674 0.833 0.931

(b)

Figure 6. Numerical solution obtained for the componenmeiy « by using:(a) ALUS-G = 0.95; (b) TOPUS« = 2.

4.3 2D turbulent free jet impinging onto a rigid wall

A 2D jet impinging normally onto flat surface at high Reynotdsmber is a very important test case for assessing
the performance of convection terms discretization. Itdilent regime, this free surface flow has been chosen as a
representative test bed because there is (see Watson Y B@6dpproximated analytical solution for the total thickne
of the fluid layer flowing on a flat rigid wall. This problem isfiitult to simulate because the free surface boundary
conditions must be specified on an arbitrarily moving boundsee an illustration in Fig. 7). The Freeflow code run this

L
-
< free surface/// \\ _—
outflow 1|4 e h --.________—___ __—  outflow 2
¥

rigid surface

Figure 7. Configuration of a free jet impinging onto a rigidfage.

problem at Reynolds number 50 x 104, which was based on the maximum velodify,,, = 1.0 m/s and diameter of
the inletZ = 0.01 m. Three meshes were used, namely: the coarse<2®0 (6, = J,, = 0.001 m); the medium 400«

100 ¢, = d,, = 0.0005 m); and the fine 80& 200 ¢, = J, = 0.00025 m) computational cells. By using these meshes, a
comparison was made between the free surface height (dle¢himkness of the layer), obtained from numerical methods
(ALUS-5 = 0.4 and TOPUS« = 2 and the analytical viscous solution of Watson (1964). Tadisplayed in Figs. 8 (a)
and (b). One can see from these figures that the numericdisesufine mesh are generally in good agreement with the
analytical solution, displaying small differences in soragions of the flow.

(@) (b)
3 T T T T T T T 2 T T T T T
25 b Analytical solution 25 f Analytical solution 1
esh 200x50 e esh 200x50 ---e-—-
Mesh 400x100 - m-- Mesh 400x100 -—m---
- i Mesh 800x200 ------ = | Mesh 800x200 ---%--- |
2o -
o i o
= l‘ =
15 3.".,_. rarseenees 15 |
i
A m
ie*""
1 ke 2 ! 7
o Mlml o c::oz o ciIJcG a olcm DD'ms a c::os iy 0'307 ono0e o UJ:;ED1 U.E;JJQ U.UIJEB EI.UIUM U.UIUJ5 ] EIIJJS U.EIDUT 0.0008
 XI(0.5°L'Re) ' ' X/(0.5"L"Re)

Figure 8. Comparison on three meshes between numericailosond analytical solution of Watson (1964&) ALUS-
0 =0.4; (b) TOPUS« = 2.
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5. CONCLUSION

In this work, two new high order upwind schemes for advectern discretizations (called ALUS and TOPUS)
have been proposed. In the 1D/2D numerical experimentsihegstigated, both schemes provided good results when
compared with analytical solution and experimental datar the future, the authors will be concerned with to the
application of theses high order upwind techniques foriaglmon-Newtonian and turbulent flows.
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